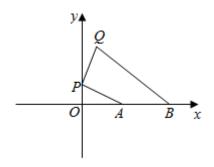

2022-2023 学年江苏省淮安市清河区启明外国语学校八年级(下)期末数学试卷

一、选择题(本大题共有8小题,每小题3分,共24分。)


1.	(3	分)下列调查,适	台采用普查的是()				
	A.	了解一个班级学生	上一分钟跳绳成绩					
	В.	了解我市八年级学	产生的名著阅读情况					
	C.	调查里运河的水质	賃情况					
	D.	调查人们对冰墩埠	敦的喜爱情况					
2.	(3	(3分)对于事件"某学习小组14人中至少有2人在同一个月过生日",从发生的可能性大小判断,你						
	认	为该事件属于()					
	A.	不可能事件		В.	随机事件			
	C.	必然事件		D.	无法判断			
3.	(3	分)分式 <u>x+5</u> 的值 x-2	i是零,则 x 的值为()				
	Α.	2	B. 5	C.	- 2	D.	- 5	
4.	(3	分)下列等式成立	的是()					
		$\frac{b}{2} = \frac{bc}{2c}$		В.	$\sqrt{2} + \sqrt{5} = \sqrt{7}$ $\sqrt{27} \div \sqrt{3} = 3$			
	C.	$\frac{x-1}{x^2-1} = x+1$		D.	$\sqrt{27} \div \sqrt{3} = 3$			
5.	(3	分)反比例函数 y	= a-1 的图象分布在第二	<u>-</u> `	四象限,则 a 的取	值范	围是()	
	A.	<i>a</i> <1	B. <i>a</i> >1	C.	<i>a</i> ≤1	D.	$a \geqslant 1$	
6.	(3	分)下列关于3√·	- 7的表述错误的是()				
	A.	它是最简二次根式	t	В.	它是无理数			
	C.	它就是3×√7		D.	它大于8			
7.	(3	分) 若关于 x 的一	·元二次方程 x ² - 4x+k=	0 有	「两个不相等的实数	(根,	那么 k 的取值范围是 ()	
	A.	$k\neq 0$	B. $k > 4$	C.	<i>k</i> <4	D.	$k < 4 \perp k \neq 0$	
8.	(3	分)如图,在平面	直角坐标系 xOy 中,菱	形』	<i>ABCD</i> 的顶点 <i>D</i> 在	x 轴	上,边 BC 在 y 轴上,若点 A 的	
	坐柱	示为(12,13),则]点 B 的坐标是()					

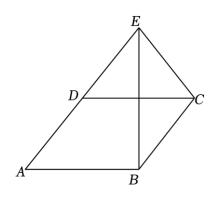
- A. (0, 5)
- B. (0, 6) C. (0, 7) D. (0, 8)
- 二、填空题(本大题共有8小题,每小题3分,共24分.
- 9. (3 分) 式子 $\sqrt{x-3}$ 在实数范围内有意义,则 x 的取值范围是 ______.
- 10. (3 分) 方程 $x^2+6x+9=0$ 的解为 _____
- 11. (3分)某中学数学教研组有32名教师,将他们按年龄分组,在38-45岁组内的教师有8名教师,那 么这个小组的频率是
- 12. (3 分) 分式 $\frac{b}{4a^3}$ 与 $\frac{1}{6abc}$ 的最简公分母是 ______.
- 13. (3分) 2020 年初,全国口罩紧缺,某口罩生产企业准备开通 A,B 两条口罩生产线,总日产量 5万只, 已知 A 生产线生产 75 万只口罩与 B 生产线生产 25 万只口罩所用天数相同. 设 A 生产线的口罩日产量 是x万只,则可列出分式方程 ______.
- 14. (3分) 若 a $<\sqrt{17}$ < b,且 a,b 是两个连续整数,则 a+b 的值为 .
- 15. (3 分) 如图, 在平面直角坐标系中, 平行四边形 OABC 的边 OC 落在 x 轴的正半轴上, 且点 C (8, 0), B (12, 4), 直线 y=2x+b 平分平行四边形 OABC 的面积,则 b=_____.

16. (3分)如图,平面直角坐标系中,已知A(1,0),B(2,0),P为y轴正半轴上一个动点,将线段

三、解答题(本大题共有10小题,共102分。解答时应写出必要的文字说明、证明)

17.
$$(8 分)$$
 (1) 计算: $3\sqrt{8} - 2\sqrt{\frac{1}{2}} - \sqrt{18}$;

(2) 计算:
$$\frac{\sqrt{5}+1}{2} \cdot \frac{\sqrt{5}-1}{2}$$
.


18. (8分)解方程:

(1)
$$x^2 - 4x - 2 = 0$$
;

(2)
$$\frac{x+1}{x-1} - \frac{4}{x^2-1} = 1$$
.

19. (8 分) 先化简,再求值:
$$(\frac{3}{a+1} - a+1) \div \frac{a^2-4a+4}{a+1}$$
, 其中 a 是方程 $x^2 - 2x = 0$ 的解.

20. (8分) 如图,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE=AD,且 $BE\perp DC$. 求证: 四边形 DBCE 为菱形.

21. (9分) 类比和转化是数学中解决新的问题时最常用的数学思想方法.

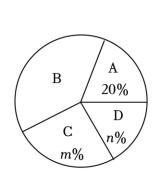
【学习新知,类比求解】解方程: $\sqrt{x+2}$ =3.

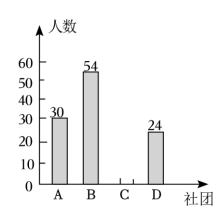
解:去根号,两边同时平方得一元一次方程 ______,解这个方程,得 x=_____. 经检验,x

=_____是原方程的解.

【学会转化,解决问题】运用上面的方法解下列方程:

(1)
$$\sqrt{x-1}-4=0$$
;

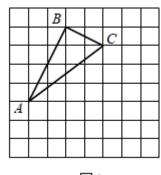

(2)
$$\sqrt{4x^2+5x}-2x=1$$
.


22. (10 分) 某校组织八年级学生参加 "A. 摄影社团、B. 文学社团、C. 篮球社团、D. 美术社团" 4 个

社团,要求每人必须参加,并且每人只能选择其中的一个社团.为了解学生对这几个社团的选择意向,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:

社团选择意向的扇形统计图

社团选择意向的条形统计图



- (1) 求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
- (2) $m = ____, n = ____;$
- (3) 若该校八年级共有1200名学生,试估计该校选择意向为"美术社团"的学生有多少人?
- 23. (9分) 如图 1 与图 2,在边长均为 1 个单位长度的小正方形组成的网格中, $\triangle ABC$ 的顶点及点 O 均在格点上,请仅用无刻度直尺完成作图(保留作图痕迹)。

点

- (1) 在图 1 中,作 $\triangle ABC$ 关于点 O 成中心对称的 $\triangle A'$ B' C';
- (2) 在图 2 中.
- ①作 $\triangle ABC$ 绕点 A 顺时针旋转一定角度后,顶点仍在格点上的 $\triangle AB'$ C';
- ② 请 直 接 写 出 :

В

到

AC

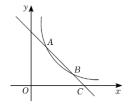
距

窝

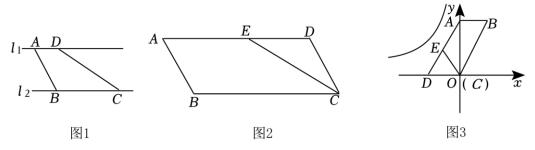
的


为 _____.

图 1


冬 2

24. (10 分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示. 根据图中提供的信息,解答下列问题:


- (1) 写出从药物释放开始, y 与 x 之间的两个函数关系式及相应的自变量取值范围;
- (2) 据测定,当空气中每立方米的含药量降低到 0.9 毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

- 25. (10 分) 商场某种商品平均每天可销售 30 件,每件盈利 50 元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.设每件商品降价 x 元.据此规律,请回答:
 - (1) 商场日销售量增加 件,每件商品盈利 元 (用含 x 的代数式表示);
 - (2) 在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
- 26. (10 分) 如图,一次函数 y=-x+3 的图象与反比例函数 $y=\frac{k}{x}$ ($k\neq 0$) 在第一象限的图象交于 A (1, a) 和 B (2, b) 两点,与 x 轴交于点 C.
 - (1) 求反比例函数的关系式;
 - (2) 根据图象,当 $-x+3 < \frac{k}{x}$ 时 x 的取值范围为: _______;
 - (3) 若点 P 在 x 轴上,且 $S_{\triangle APC} = \frac{10}{3} S_{\triangle AOB}$,求点 P 的坐标;
 - (4) 若点 P 在 y 轴上, Q 在双曲线上, 当以 A 、 B 、 P 、 Q 为顶点的四边形是平行四边形时,直接写出 Q 点的坐标:

27. (12 分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图 1,直线 $l_1/\!/l_2$,点 A,D 在直线 l_1 上,点 B,C 在直 l_2 上,若 $\angle BAD = 2 \angle BCD$,则四边形 ABCD 是半对角四边形.

- (1)如图 2,点 E 是平行四边形 ABCD 的边 AD 上一点, $\angle A=60^\circ$,AB=2,AE=4. 若四边形 ABCE 为半对角四边形,求平行四边形 ABCD 的面积;
- (2)如图 3,以平行四边形 ABCD 的顶点 C 为坐标原点,边 CD 所在直线为 x 轴,对角线 AC 所在直线为 y 轴,建立平面直角坐标系. 点 E 是边 AD 上一点,满足 BC=AE+CE. 求证: 四边形 ABCE 是半对角四边形;
- (3)在(2)的条件下,当 AB=AE=4, $\angle B=60$ °时,将四边形 ABCE 向左平移 a (a>0) 个单位后,恰有两个顶点落在反比例函数 $y=\frac{k}{x}$ 的图象上,求 k 的值.

2022-2023 学年江苏省淮安市清河区启明外国语学校八年级(下)期末数学试卷

参考答案与试题解析

一、选择题(本大题共有8小题,每小题3分,共24分。)

1.	(3分)下列调查,适合采用普查的是()			
	A. 了解一个班级学生一分钟跳绳成绩				
	B. 了解我市八年级学生的名著阅读情况				
	C. 调查里运河的水质情况				
	D. 调查人们对冰墩墩的喜爱情况				
	【答案】A				
	【分析】由普查得到的调查结果比较准确,何	但所费人力、物力和时间较多,而抽样调查得到的调查结果			
	比较近似.				
	【解答】解: A、了解一个班级学生一分钟员	兆绳成绩,适合全面调查,符合题意;			
	B、了解我市八年级学生的名著阅读情况, 这	适合抽样调查,不符合题意;			
	C、调查里运河的水质情况,适合抽样调查,不符合题意; D、调查人们对冰墩墩的喜爱情况,适合抽样调查,不符合题意.				
	故选: A.				
2.	(3分)对于事件"某学习小组 14人中至少	有 2 人在同一个月过生日",从发生的可能性大小判断,你			
	认为该事件属于 ()				
	A. 不可能事件	B. 随机事件			
	C. 必然事件	D. 无法判断			
	【答案】 <i>C</i>				
	【分析】先确定"14人中至少有2人在同一	个月过生日"这一事件为必然事件,即可求解.			

故选: C.

A. 2

C. -2 D. -5

【解答】解: 14人中至少有2人在同一个月过生日"这一事件为必然事件,

3. (3分) 分式 $\frac{x+5}{x-2}$ 的值是零,则 x 的值为 ()

B. 5

【分析】利用分式值为零的条件可得 x+5=0,且 $x-2\neq 0$,再解即可.

【解答】解: 由题意得: x+5=0,且 $x-2\neq 0$,

解得: x=-5,

故选: D.

- 4. (3分)下列等式成立的是()
 - A. $\frac{b}{2} = \frac{bc}{2c}$

B.
$$\sqrt{2} + \sqrt{5} = \sqrt{7}$$

C. $\frac{x-1}{x^2-1} = x+1$

D. $\sqrt{27} \div \sqrt{3} = 3$

【答案】D

【分析】根据分式的基本性质: $\frac{a}{b} = \frac{ac}{bc} (c \neq 0)$; 对分子、分母进行因式分解,找出公因式进行约分;

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} (a \ge 0, b \ge 0), \text{ } \text{\mathbb{D}} \text{\mathbb{T}} \text{\mathbb{X}} \text{\mathbb{H}}.$$

【解答】解: A. 当 c=0 时不符合题意,故此项错误;

- B. 无法进行加法计算, 故此项错误;
- C. $\frac{x-1}{x^2-1} = \frac{x-1}{(x+1)(x-1)} = \frac{1}{x+1}$, 故此项错误;
- D. $\sqrt{27} \div \sqrt{3} = \sqrt{9} = 3$, 故此项正确.

故选: D.

- 5. (3分) 反比例函数 $y=\frac{a-1}{x}$ 的图象分布在第二、四象限,则 a 的取值范围是 ()
 - A. *a*<1
- B. a > 1
- C. *a*≤1
- D. *a*≥1

【答案】A

【分析】直接利用反比例函数图象分布在第二、四象限,从而得出 a-1<0,进而得出答案.

【解答】解: :反比例函数 $y=\frac{a-1}{x}$ 的图象分布在第二、四象限,

∴ a - 1 < 0,

解得: a<1.

故选: A.

- 6. (3 分) 下列关于 3√7的表述错误的是 ()
 - A. 它是最简二次根式

B. 它是无理数

C. 它就是 3×√7

D. 它大于8

【答案】D

【分析】根据题意逐项分析判断即可即可求解.

【解答】解: $3\sqrt{7}$ 是最简二次根式,是无理数, $3\sqrt{7}=3\times\sqrt{7}$,故 A,B,C,正确,

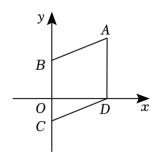
 $:: 3\sqrt{7} = \sqrt{63} < \sqrt{64} = 8$,故 *D* 选项错误.

故选: D.

- 7. (3 分) 若关于 x 的一元二次方程 x^2 4x+k=0 有两个不相等的实数根,那么 k 的取值范围是 ()
 - A. $k\neq 0$
- B. k > 4
- C. $k \leq 4$
- D. $k \le 4 \perp k \ne 0$

【答案】*C*

【分析】利用一元二次方程 $ax^2+bx+c=0$ ($a\neq 0$) 的根与 $\Delta=b^2-4ac$ 有如下关系: 方程有两个不相等 的两个实数根, $\Delta > 0$, 进而求出即可.


【解答】解: ::关于 x 的一元二次方程 x^2 - 4x+k=0 有两个不相等的实数根,

 $b^2 - 4ac = 16 - 4k > 0$

解得: *k*<4.

故选: C.

8. (3分)如图,在平面直角坐标系 xOy中,菱形 ABCD 的顶点 D 在 x 轴上,边 BC 在 y 轴上,若点 A 的 坐标为(12, 13),则点 B 的坐标是()

- A. (0, 5)

- B. (0, 6) C. (0, 7) D. (0, 8)

【答案】D

【分析】在 $Rt \triangle ODC$ 中,利用勾股定理求出 OC 即可解决问题.

【解答】解: :: A (12, 13),

- $\therefore OD = 12, AD = 13,$
- ∵四边形 ABCD 是菱形,
- $\therefore BC = CD = AD = 13,$

在Rt \triangle ODC中,OC= $\sqrt{\text{CD}^2-\text{OD}^2}=\sqrt{13^2-12^2}=5$,

∴OB = 13 - 5 = 8.

∴B (0, 8).

故选: D.

- 二、填空题(本大题共有8小题,每小题3分,共24分.
- 9. (3分) 式子 \sqrt{x} -3在实数范围内有意义,则 x 的取值范围是 x≥3 .

【答案】见试题解答内容

【分析】直接利用二次根式的有意义的条件得出 x 的取值范围, 进而得出答案.

【解答】解:由题意可得: x - 3≥0,

解得: *x*≥3.

故答案为: *x*≥3.

10. (3 分) 方程 $x^2+6x+9=0$ 的解为 $x_1=x_2=-3$.

【答案】 $x_1 = x_2 = -3$.

【分析】利用配方法得到 $(x+3)^2=0$,然后解方程即可.

【解答】解: $: x^2 + 6x + 9 = 0$,

 $\therefore (x+3)^2 = 0,$

 $x_1 = x_2 = -3$.

11. (3分)某中学数学教研组有 32 名教师,将他们按年龄分组,在 38-45 岁组内的教师有 8 名教师,那么这个小组的频率是 0.25.

【答案】见试题解答内容

【分析】根据频率的求法: 频率=频数÷数据总数即可求解.

【解答】解:根据题意,38-45岁组内的教师有8名,

即频数为8,而总数为32;

故这个小组的频率是 8÷32=0.25.

故答案为: 0.25.

12. (3 分) 分式 $\frac{b}{4a^3}$ 与 $\frac{1}{6abc}$ 的最简公分母是 $\frac{12a^3bc}{6abc}$.

【答案】见试题解答内容

【分析】找出各个因式的最高次幂,乘积就是分母的最简公分母.

【解答】解:分式 $\frac{b}{4a^3}$ 与 $\frac{1}{6abc}$ 的最简公分母是 $12a^3bc$,

故答案为: 12a³bc.

13. (3分) 2020 年初,全国口罩紧缺,某口罩生产企业准备开通 A,B 两条口罩生产线,总日产量 5 万只,已知 A 生产线生产 75 万只口罩与 B 生产线生产 25 万只口罩所用天数相同。设 A 生产线的口罩日产量

是 x 万只,则可列出分式方程 $\frac{75}{x} = \frac{25}{5-x}$.

【答案】见试题解答内容

【分析】设 A 生产线的口罩日产量是 x 万只,则 B 生产线的口罩日产量是 (5-x) 万只,根据工作时间=工作总量:工作效率结合 A 生产线生产 75 万只口罩与 B 生产线生产 25 万只口罩所用天数相同,即可得出关于 x 的分式方程,此题得解.

【解答】解:设A生产线的口罩日产量是x万只,则B生产线的口罩日产量是(5-x)万只,

依题意,得:
$$\frac{75}{x} = \frac{25}{5-x}$$
.

故答案为:
$$\frac{75}{x} = \frac{25}{5-x}$$
.

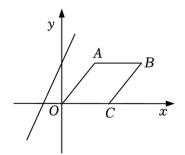
14. (3 分) 若 a $<\sqrt{17}$ < b,且 a,b 是两个连续整数,则 a+b 的值为 $\underline{}$ 9.

【答案】9.

【分析】根据 a, b 是两个连续的整数, $a < \sqrt{17} < b$, 可以求得 a < b 的值,再代入计算即可求解.

【解答】解: ::
$$4 < \sqrt{17} < 5$$
,

$$\nabla : a \leq \sqrt{17} \leq b$$

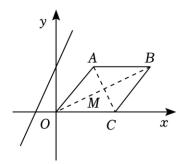

$$∴a=4, b=5,$$

当
$$a=4$$
, $b=5$ 时,

$$a+b=4+5=9$$
.

故答案为: 9.

15. (3分) 如图,在平面直角坐标系中,平行四边形 OABC 的边 OC 落在 x 轴的正半轴上,且点 C (8,0), B (12,4),直线 y=2x+b 平分平行四边形 OABC 的面积,则 $b=\underline{}$.



【答案】 - 10.

【分析】连接 AC,OB 交于点 M,再用平行四边形的性质求出 M,y=2x+b 平分平行四边形 OABC 的面积要经过 M,即可求解.

【解答】解:若直线平分平行四边形的面积,则经过平行四边形对角线交点.

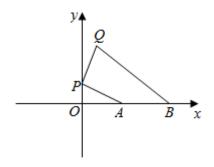
如图,连接AC,OB交于点M,

:'四边形 OABC 为平行四边形,

 $\therefore AB = OC$, AB // OC, 点 M 为 OB, AC 的中点,

∵点B(12, 4), 点O(0, 0),

∴点 *M* 坐标为 (6, 2),


:直线 y=2x+b 平分平行四边形 *OABC* 的面积,

∴直线 y=2x+b 经过点 M (6, 2), 则 2=12+b,

解得: b= - 10,

故答案为: - 10.

16. (3 分) 如图,平面直角坐标系中,已知 A (1, 0),B (2, 0),P 为 y 轴正半轴上一个动点,将线段 PA 绕点 P 逆时针旋转 90°,点 A 的对应点为 Q,则线段 BQ 的最小值是 $\frac{3\sqrt{2}}{2}$.

【答案】见试题解答内容

【分析】设P(0, m),则OP=m,作 $QM\perp y$ 轴于M,通过证得 $\triangle AOP \cong \triangle PMQ$ 求得Q的坐标,然后根据勾股定理得到 $BQ=\sqrt{2\left(m-\frac{1}{2}\right)^2+\frac{9}{2}}$,即可求得当m=1时,BQ有最小值 $\frac{3\sqrt{2}}{2}$.

【解答】解: ∵A (1, 0),

 $\therefore OA = 1$,

设P(0, m),则OP=m,

过点 Q 作 $QM \perp y$ 轴于 M,

由于将线段 PA 绕点 P 逆时针旋转 90° 到 PQ,

$$\therefore \angle APQ = 90^{\circ}$$
,

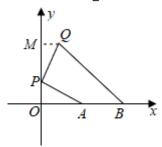
$$\therefore \angle OAP + \angle APO = \angle APO + \angle QPM$$

$$\therefore \angle OAP = \angle QPM$$

在 $\triangle AOP$ 和 $\triangle PMQ$ 中,

PA=PQ

 $\therefore \triangle AOP \cong \triangle PMQ \ (AAS),$


$$\therefore MQ = OP = m, PM = OA = 1,$$

$$\therefore Q (m, m+1),$$

$$\therefore BQ = \sqrt{(m-2)^2 + (m+1)^2} = \sqrt{2(m-\frac{1}{2})^2 + \frac{9}{2}},$$

∴当
$$m = \frac{1}{2}$$
时, BQ 有最小值 $\frac{3\sqrt{2}}{2}$,

故答案为:
$$\frac{3\sqrt{2}}{2}$$
.

三、解答题(本大题共有10小题,共102分。解答时应写出必要的文字说明、证明)

17.
$$(8 分)$$
 (1) 计算: $3\sqrt{8} - 2\sqrt{\frac{1}{2}} - \sqrt{18}$;

(2) 计算:
$$\frac{\sqrt{5}+1}{2} \cdot \frac{\sqrt{5}-1}{2}$$
.

【答案】(1) $2\sqrt{2}$; (2) 1.

【分析】(1) 先把每一个二次根式化成最简二次根式, 然后再进行计算即可解答;

(2) 利用平方差公式,进行计算即可解答.

【解答】解: (1)
$$3\sqrt{8} - 2\sqrt{\frac{1}{2}} - \sqrt{18}$$

$$=6\sqrt{2}-\sqrt{2}-3\sqrt{2}$$

$$=2\sqrt{2}$$
:

(2)
$$\frac{\sqrt{5}+1}{2} \cdot \frac{\sqrt{5}-1}{2}$$

$$=\frac{(\sqrt{5})^2-1^2}{4}$$

$$=\frac{5-1}{4}$$

=1.

- 18. (8分)解方程:
 - (1) $x^2 4x 2 = 0$;

(2)
$$\frac{x+1}{x-1} - \frac{4}{x^2-1} = 1$$
.

【答案】(1)
$$x_1 = 2 + \sqrt{6}$$
, $x_2 = 2 - \sqrt{6}$;

(2) 无解.

【分析】(1) 用公式法求解即可;

(2) 先去分母化成整式方程求解, 然后再检验即可求解.

【解答】解: (1) : a=1, b=-4, c=-2,

$$\Delta = b^2 - 4ac = (-4)^2 - 4 \times 1 \times (-2) = 24 > 0,$$

$$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{24}}{2} = 2 \pm \sqrt{6},$$

$$x_1 = 2 + \sqrt{6}, x_2 = 2 - \sqrt{6}$$

(2) 方程两边同时乘以 (x+1)(x-1), 得

$$(x+1)^2 - 4 = (x+1)(x-1),$$

化简整理, 得 2x - 2 = 0,

解得: x=1,

检验: 把x=1代入(x+1)(x-1), 得(x+1)(x-1) = (1+1)(1-1) = 0,

- $\therefore x=1$ 不是原方程的根,是增根,
- :.原方程无解.

19. (8分) 先化简,再求值: (
$$\frac{3}{a+1}$$
 - $a+1$) ÷ $\frac{a^2-4a+4}{a+1}$, 其中 a 是方程 x^2 - $2x=0$ 的解.

【答案】
$$-\frac{a+2}{a-2}$$
, 1.

【分析】先根据分式的加减法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,求出方程的解,根据分式有意义的条件得出 a 不能为 - 1 和 2,求出 a 只能为 0,把 a = 0 代入求出答案即可.

【解答】解:
$$(\frac{3}{a+1} - a+1) \div \frac{a^2 - 4a + 4}{a+1}$$

$$= [\frac{3}{a+1} - (a-1)] \div \frac{(a-2)^2}{a+1}$$

$$= \frac{3 - (a-1)(a+1)}{a+1} \cdot \frac{a+1}{(a-2)^2}$$

$$= \frac{3 - a^2 + 1}{a+1} \cdot \frac{a+1}{(a-2)^2}$$

$$= \frac{-a^2 + 4}{a+1} \cdot \frac{a+1}{(a-2)^2}$$

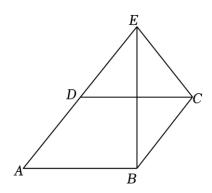
$$= \frac{-(a+2)(a-2)}{a+1} \cdot \frac{a+1}{(a-2)^2}$$

$$= \frac{-(a+2)(a-2)}{a+2} \cdot \frac{a+1}{(a-2)^2}$$

$$= -\frac{a+2}{a-2},$$

解方程 x^2 - 2x=0 得: $x_1=0$, $x_2=2$,

要使分式(
$$\frac{3}{a+1}$$
 - $a+1$) ÷ $\frac{a^2-4a+4}{a+1}$ 有意义, $a+1 \neq 0$ 且 a - $2 \neq 0$,


所以 a 不能为 - 1 和 2,

∵a 是方程 x^2 - 2x=0 的解,

∴a 只能为 0,

当
$$a=0$$
 时,原式= $-\frac{0+2}{0-2}=1$.

20. (8分) 如图,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE=AD,且 $BE\perp DC$. 求证: 四边形 DBCE 为菱形.

【答案】见解析.

【分析】先根据对边平行且相等的四边形是平行四边形证明四边形 DBCE 为平行四边形,得 BE 与 CD

互相平分,再根据对角线垂直平分的四边形是菱形得出结论.

【解答】证明: ∵□ABCD,

- ∴AD=BC, AD//BC, $\Box DE//BC$,
- :DE=AD,
- $\therefore DE = BC$
- ∴四边形 DBCE 为平行四边形,
- ∴*BE* 与 *CD* 互相平分,
- $:BE\perp DC$
- ∴四边形 DBCE 为菱形.
- 21. (9分) 类比和转化是数学中解决新的问题时最常用的数学思想方法.

【学习新知,类比求解】解方程: $\sqrt{x+2} = 3$.

解:去根号,两边同时平方得一元一次方程 x+2=9 ,解这个方程,得 x=7 . 经检验,x=7 是原方程的解.

【学会转化,解决问题】运用上面的方法解下列方程:

- (1) $\sqrt{x-1}-4=0$;
- (2) $\sqrt{4x^2+5x}-2x=1$.

【答案】学习新知,类比求解: x+2=9, 7, 7;

- (1) x=17;
- (2) x=1.

【分析】学习新知,类比求解:根据题意补充完整即可;

- (1) 移项得, $\sqrt{x-1}$ =4,根据原题提供的方法进行求解即可;
- (2) 移项得, $\sqrt{4x^2+5x}=2x+1$ 根据原题提供的方法进行求解即可.

【解答】解: $\sqrt{x+2} = 3$.

去根号,两边同时平方得一元一次方程 x+2=9,

解这个方程,得x=7.

经检验, x=7 是原方程的解.

故答案为: x+2=9, 7, 7;

解: (1)
$$\sqrt{x-1}$$
 -4=0

移项得, $\sqrt{x-1} = 4$,

去根号,两边同时平方得一元一次方程 x-1=16,

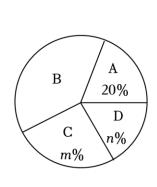
解这个方程, 得x=17.

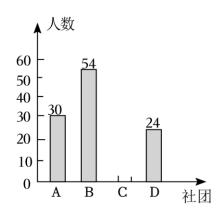
经检验, x=17 是原方程的解.

(2)
$$\sqrt{4x^2+5x-2x=1}$$

移项得,
$$\sqrt{4x^2+5x}=2x+1$$
,

去根号,两边同时平方得方程 $4x^2+5x=4x^2+4x+1$,


解这个方程, 得x=1.


经检验, x=1 是原方程的解.

22. (10 分)某校组织八年级学生参加"A. 摄影社团、B. 文学社团、C. 篮球社团、D. 美术社团"4个社团,要求每人必须参加,并且每人只能选择其中的一个社团. 为了解学生对这几个社团的选择意向,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出). 请你根据给出的信息解答下列问题:

社团选择意向的扇形统计图

社团选择意向的条形统计图

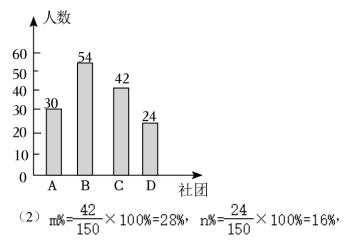
- (1) 求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
- (2) m = 28 , n = 16 ;
- (3) 若该校八年级共有1200名学生,试估计该校选择意向为"美术社团"的学生有多少人?

【答案】(1) 150, 补全图形见解析过程;

- (2) 28, 16;
- (3) 192.

【分析】(1)由摄影社团人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得篮球社团人数,从而补全图形;

(2) 根据百分比的概念可得 $m \times n$ 的值;

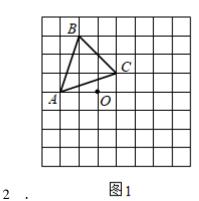

(3) 根据该项人数=总人数×该项所占的百分比,得到答案.

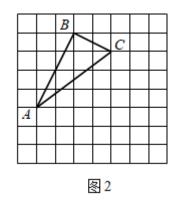
【解答】解: (1) 参加这次问卷调查的学生人数为: $30 \div 20\% = 150$ (人),

篮球社团的人数为 150 - (30+54+24) = 42 (人),

补全图形如下:

社团选择意向的条形统计图


即: m=28, n=16,

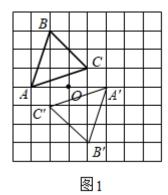

故答案为: 28, 16;

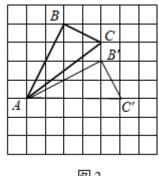
(3) 1200×16%=192 (人),

则该校八年级共有1200名学生,试估计该校选择意向为"美术社团"的学生有192人.

- 23. (9分) 如图 1 与图 2,在边长均为 1 个单位长度的小正方形组成的网格中, $\triangle ABC$ 的顶点及点 O 均在格点上。请仅用无刻度直尺完成作图(保留作图痕迹)。
 - (1) 在图 1 中,作 $\triangle ABC$ 关于点 O 成中心对称的 $\triangle A'$ B' C';
 - (2) 在图 2 中.
 - ①作 $\triangle ABC$ 绕点 A 顺时针旋转一定角度后,顶点仍在格点上的 $\triangle AB'$ C';
 - ② 请 直 接 写 出 : 点 B 到 AC 的 距 离 为

【答案】(1) 作图见解析部分.

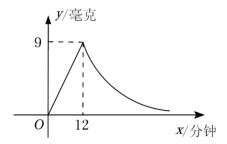

(2) ①作图见解析部分.


(2)2.

【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A',B',C'即可.

- (2) ①利用数形结合的思想解决问题即可.
- ②利用三角形面积公式求解即可.

【解答】解: (1) 如图 1 中, $\triangle A' B' C'$ 即为所求.


冬 2

- (2) ①如图 2 中, △AB' C' 即为所求.
- ②设 AC 边上的高为 h, $\frac{1}{2} \cdot AC \cdot h = \frac{1}{2} \cdot 2\sqrt{5} \cdot 4\sqrt{5}$,

解得 h=2,

故答案为: 2.

- 24. (10 分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示. 根据图中提供的信息,解答下列问题:
 - (1) 写出从药物释放开始,v = x 之间的两个函数关系式及相应的自变量取值范围;
 - (2) 据测定,当空气中每立方米的含药量降低到 0.9 毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

【答案】(1) 正比例函数解析式是 $y = \frac{3}{4}x$ (0 $\le x \le 12$),反比例函数解析式是 $y = \frac{108}{x}$ ($x \ge 12$);

(2) 2 小时.

【分析】(1) 首先根据题意,已知药物释放过程中,室内每立方米空气中的含药量 y (毫克) 与时间 x (分钟) 成正比;药物释放完毕后,y 与 x 成反比例,将数据代入,用待定系数法可得两个函数的关系式;

(2) 根据(1)中的解析式列出关系式,进一步求解可得答案.

【解答】解: (1) 当 0 < x < 12 时,设 y = ax ($a \ne 0$);当 $x \ge 12$ 时,设 $y = \frac{k}{x}$ ($k \ne 0$).

将 (12, 9) 代入 y=ax,

得:
$$9=12a$$
,解得: $a=\frac{3}{4}$,

$$\therefore y = \frac{3}{4}x \ (0 \le x \le 12).$$

将 (12, 9) 代入
$$y = \frac{k}{x}$$
,

得:
$$9 = \frac{k}{12}$$
, 解得: $k = 108$,

$$\therefore y = \frac{108}{x} \ (x \geqslant 12).$$

故正比例函数解析式是 $y=\frac{3}{4}x$ (0 $\leq x\leq 12$),反比例函数解析式是 $y=\frac{108}{x}$ ($x\geq 12$);

(2)
$$\leq y = 0.9 \text{ pt}, \frac{108}{x} = 0.9,$$

解得: *x*=120,

120 分钟=2 小时,

答: 从药物释放开始,至少需要经过2小时后,学生才能进入教室.

- 25. (10 分) 商场某种商品平均每天可销售 30 件,每件盈利 50 元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.设每件商品降价 x 元.据此规律,请回答:
 - (1) 商场日销售量增加 2x 件,每件商品盈利 (50-x) 元 (用含x的代数式表示);
 - (2) 在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?

【答案】见试题解答内容

【分析】(1)降价 1元,可多售出 2件,降价 x元,可多售出 2x 件,盈利的钱数=原来的盈利 - 降低的钱数:

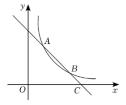
(2) 等量关系为:每件商品的盈利×可卖出商品的件数=2100,把相关数值代入计算得到合适的解即

可.

【解答】解: (1) 降价 1 元,可多售出 2 件,降价 x 元,可多售出 2x 件,盈利的钱数=50 - x,故答案为 2x;50 - x;

(2) 由题意得: $(50 - x)(30+2x) = 2100(0 \le x < 50)$

化简得: $x^2 - 35x + 300 = 0$, 即 (x - 15)(x - 20) = 0,


解得: x₁=15, x₂=20

- ::该商场为了尽快减少库存,
- :. 降的越多, 越吸引顾客,
- ∴选 *x*=20,

答:每件商品降价 20 元,商场日盈利可达 2100 元.

26. (10 分) 如图,一次函数 y=-x+3 的图象与反比例函数 $y=\frac{k}{x}$ ($k\neq 0$) 在第一象限的图象交于 A (1, a) 和 B (2, b) 两点,与 x 轴交于点 C.

- (1) 求反比例函数的关系式;
- (2) 根据图象,当 $-x+3 < \frac{k}{x}$ 时 x 的取值范围为: 0 < x < 1 或 x > 2 ;
- (3) 若点P在x轴上,且 $S_{\triangle APC} = \frac{10}{3} S_{\triangle AOB}$,求点P的坐标;
- (4) 若点 P 在 y 轴上, Q 在双曲线上, 当以 A 、 B 、 P 、 Q 为顶点的四边形是平行四边形时,直接写出 Q 点的坐标: ______(3, $\frac{2}{3}$) 或 (-1, -2)_____.

【答案】(1) $y=\frac{2}{x}$;

- (2) 0 < x < 1 或 x > 2;
- (3)(8,0)或(-2,0);
- (4) $(3, \frac{2}{3})$ 或 (-1, -2).

【分析】(1) 先把点A(1,a)代入y=-x+3 中求出a得到A(1,2),然后把A点坐标代入 $y=\frac{k}{x}(k\neq 0)$ 中求出k,即可得到反比例函数的表达式;

(2) 根据图象得出取值范围即可;

(3)连接 OA, OB, 设直线 AB 与 x 轴交于点 C, 由 $S_{\triangle AOB} = S_{\triangle AOC} - S_{\triangle OBC} = \frac{1}{2} \times 3 \times 2 - \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$,

又
$$S_{\triangle APC} = \frac{10}{3} S_{\triangle AOB}$$
,得 $S_{\triangle APC} = \frac{10}{3} \times \frac{3}{2} = 5$,设 $P(t, 0)$,则 $OC = |t - 3|$,所以

$$S_{\triangle APC} = \frac{1}{2} \times 20C = \frac{1}{2} \times 2 |t-3| = |t-3| = 5$$
, 求解即可.

(4) 分三种情况: 当 $\square APQB$ 时, 当 $\square APBQ$ 时, 当 $\square AQPB$ 时, 分别求解即可.

【解答】解: (1) 把点A (1, a) 代入y=-x+3, 得a=2,

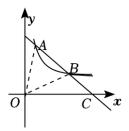
A(1, 2),

把A(1, 2)代入反比例函数 $y=\frac{k}{x}(k\neq 0)$

 $\therefore k=1\times 2=2;$

∴反比例函数的表达式为 $y=\frac{2}{x}$

(2) 把
$$B$$
 (2, b) 代入 $y=\frac{2}{x}$, 得 $b=1$,


∴ B (2, 1)

由(1)知A(1,2),B(2,1),

根据图象可知,当 $-x+3 < \frac{k}{x}$ 时,0 < x < 1 或 x > 2,

∴当
$$-x+3$$
 < $\frac{k}{x}$ 时, x 的取值范围为 0< x <1 或 x >2;

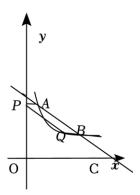
(3) 解: 连接 OA, OB, 设直线 AB 与 x 轴交于点 C, 如图,

$$\therefore S_{\triangle AOB} = S_{\triangle AOC} - S_{\triangle OBC} = \frac{1}{2} \times 3 \times 2 - \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$$

$$X : S_{\triangle APC} = \frac{10}{3} S_{\triangle AOB}$$

$$\therefore S_{\triangle APC} = \frac{10}{3} \times \frac{3}{2} = 5$$

设P(t, 0),则OC=|t-3|,


$$\therefore S_{\triangle APC} = \frac{1}{2} \times 20C = \frac{1}{2} \times 2 | t-3 | = | t-3 | = 5$$

解得: t=8或 t=-2,

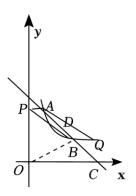
∴P (8, 0) 或 (-2, 0).

(4)
$$\text{M}: \, \mathcal{C}_{Q}(x, \frac{2}{x}) (x > 0),$$

当□APQB时,如图,

- $\therefore \Box APQB$,
- $\therefore AP//QB, PQ=AB,$
- A (1, 2), B (2, 1),

$$\therefore P(0, \frac{2}{x} + 1),$$

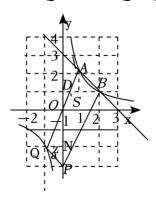

$$\therefore PQ^2 = x^2 + 1, AB^2 = (1 - 2)^2 + (2 - 1)^2 = 2,$$

$$x^2+1=2$$
,

解得: $x_1=1$, $x_2=-1$ (不符合题意, 舍去)

 $\therefore P(1, 2)$, 此时与点 A 重合, 不是平行四边形, 故舍去;

当 $\Box APBQ$ 时,连接PQ交AB于D,如图,

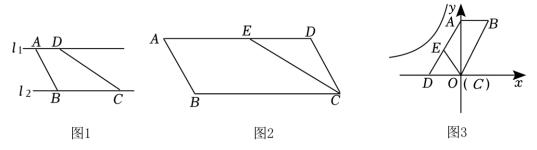

- $\Box APBQ$
- ∴点D是AB与PQ的中点,

$$\therefore \frac{1+2}{2} = \frac{0+x}{2}$$

解得: *x*=3,

$$\therefore Q(3, \frac{2}{3}),$$

当 $\Box AQPB$ 时,过Q作 $QN \perp y$ 于N,过点B作 $BD \perp y$ 于D,过点A作 $AS \perp BD$ 于S,如图,


- $\Box AQPB$
- $\therefore PQ = AB, PQ//AB$
- $\therefore \angle QPN = \angle BMD$
- $:BD \perp y$
- $\therefore \angle BMD + \angle ABS = 90^{\circ}$,
- $: QN \perp y$
- $\therefore \angle PNQ = 90^{\circ}$
- $\therefore \angle PQN + \angle QPN = 90^{\circ}$
- $\therefore \angle PQN = \angle ABS$
- $\therefore \angle PNQ = \angle ASB = 90^{\circ}$
- $\therefore \triangle PQN \cong \triangle ABS$
- $\therefore PN = AS = 2 1 = 1$
- $\therefore PQ^2 = x^2 + 1$,
- $AB^2=2$
- $x^2+1=2$

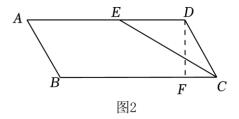
解得: $x_1 = -1$, $x_2 = 1$ (不符合题意, 舍去)

 $\therefore Q(-1, -2)$

综上,当以A、B、P、Q为顶点的四边形是平行四边形时,Q点的坐标为 $(3, \frac{2}{3})$ 或 (-1, -2).

27. (12 分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图 1,直线 $l_1/\!/l_2$,点 A,D 在直线 l_1 上,点 B,C 在直 l_2 上,若 $\angle BAD = 2 \angle BCD$,则四边形 ABCD 是半对角四边形.

- (1)如图 2,点 E 是平行四边形 ABCD 的边 AD 上一点, $\angle A=60^\circ$,AB=2,AE=4. 若四边形 ABCE 为半对角四边形,求平行四边形 ABCD 的面积;
- (2)如图 3,以平行四边形 ABCD 的顶点 C 为坐标原点,边 CD 所在直线为 x 轴,对角线 AC 所在直线为 y 轴,建立平面直角坐标系. 点 E 是边 AD 上一点,满足 BC=AE+CE. 求证: 四边形 ABCE 是半对角四边形;
- (3)在(2)的条件下,当 AB=AE=4, $\angle B=60$ °时,将四边形 ABCE 向左平移 a (a>0) 个单位后,恰有两个顶点落在反比例函数 $y=\frac{k}{2}$ 的图象上,求 k 的值.


【答案】(1) 6√3;

- (2) 证明见解答过程;
- (3) $-8\sqrt{3}$ 或 $-24\sqrt{3}$.
- 【分析】(1)根据半对角四边形的定义可得出 $\angle BCE=30^\circ$,进而可得出 $\angle DEC=\angle DCE=30^\circ$,由等角对等边可得出 CD=DE=2,结合 AD=AE+DE 即可求出 AD 的长,过点 D 作 BC 的垂线交于 F,利用勾股定理求出 DF,从而求出平行四边形的面积;
- (2)由平行四边形的性质可得出 BC//AD,BC=AD=AE+ED=AE+CE,进而可得出 CE=ED,根据等 腰三角形的性质及三角形外角的性质可得出 $\angle AEC=2\angle EDC=2\angle B$,再结合半对角四边形的定义即可证出四边形 ABCE 是半对角四边形;
- (3)由平行四边形的性质结合 AB = AE = 4, $\angle B = 60^\circ$ 可得出点 A, B, E 的坐标,分点 A, E 落在反比例函数图象上及点 B, E 落在反比例函数图象上两种情况考虑: (i) 利用平移的性质及反比例函数图象上点的坐标特征可得出关于 a 的一元一次方程,解之即可得出 a 值,再利用反比例函数图象上点的坐标特征可求出 k 值;(ii) 同(i) 可求出 k 值.综上,此题得解.

【解答】(1)解: : 四边形 ABCE 为半对角四边形,

- $\therefore \angle BCE = 30^{\circ}$,
- $\therefore \angle DEC = \angle DCE = 30^{\circ}$,
- $\therefore CD = DE = 2$,
- $\therefore AD = AE + DE = 6$

过点 D 作 BC 的垂线交于 F, 如图:

- $\therefore \angle DFC = 90^{\circ}$,
- $\therefore \angle DCF = 60^{\circ}$,
- $\therefore \angle FDC = 90^{\circ} 60^{\circ} = 30^{\circ}$,
- $\therefore CF = \frac{1}{2}CD = 1,$

由勾股定理得: $DF = \sqrt{2^2 - 1^1} = \sqrt{3}$

- $\therefore S$ 平行四边形 ABCD = $6 \times \sqrt{3}$ = $6\sqrt{3}$.
- (2)证明: : 四边形 ABCD 为平行四边形,
- BC/AD, BC=AD=AE+ED=AE+CE,
- $\therefore CE = ED$,
- $\therefore \angle AEC = 2 \angle EDC = 2 \angle B$

又:AE//BC,

- ∴四边形 ABCE 是半对角四边形;
- (3) 解:由题意,可知:点 *A* 的坐标为(0, $4\sqrt{3}$),点 *B* 的坐标为(4, $4\sqrt{3}$),点 *E* 的坐标为(-2, $2\sqrt{3}$).
- (*i*) 当点 *A*, *E* 向左平移 *a* (*a*>0) 个单位后落在反比例函数的图象上时, $-a \cdot 4\sqrt{3} = (-2 a) \times 2\sqrt{3}$,解得: a = 2,
- $\therefore k=-4\sqrt{3} a=-8\sqrt{3};$
- (ii) 当点 B, E 向左平移 a (a>0) 个单位后落在反比例函数的图象上时, $(-2-a)\times 2\sqrt{3}=(4-a)\times 4\sqrt{3}$,

解得: a=10,

:
$$k = (4-a) \times 4\sqrt{3} = -24\sqrt{3}$$
.

综上所述: k 的值为为 $-8\sqrt{3}$ 或 $-24\sqrt{3}$.