2023-2024 学年江苏省常州一中高二(上)期初数学试卷

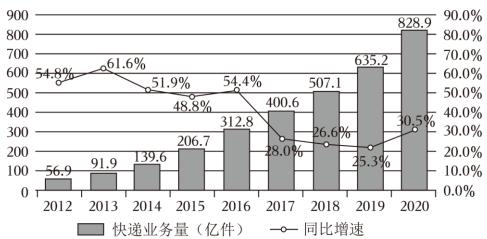
一 、	单选题:	本题共8小题,	每小题5分,	共40分。	在每小题给出的四个选项中,	只有一项是符合题目
太 要	於的。					

3	.√rn., •			
1.	(5分) 已知集合 A=	$= \{x x > 0\}, B = \{x x^2 + 2x\}$	- 3<0},则 <i>A</i> ∩ <i>B</i> =	()
	A. (0, 3)	B. (0, 1)	C. $(3, +\infty)$	D. $(1, +\infty)$
2.	(5分)已知复数z=-:	1+√3 i (<i>i</i> 为虚数单位)	_ z 为 z 的共轭复数,	若复数 $ω = \frac{z}{z}$, 则 $ω$ 的虚部为 ()
	A. $-\frac{\sqrt{3}}{2}$	B. $-\frac{\sqrt{3}}{2}i$	C. $\frac{\sqrt{3}}{2}$	D. $\frac{\sqrt{3}}{2}i$
3.	(5分)设 <i>m</i> , <i>n</i> 是两	条不同的直线,α,β	是两个不同的平面,则	下列说法正确的是()
	A. 若 <i>m</i> ⊥α, <i>n</i> ⊂β,	$m \perp n$,则 $\alpha \perp \beta$		
	B. 若 m//α, m//n,	则 n // α		
	C. 若 m//n, n _β,	<i>m</i> ⊂α,则 α⊥β		
	D. 若 α⊥β, α∩β=	$m, n \perp m, 则 n \perp \beta$		
4.	(5%) 已知 $\sin\left(\frac{\pi}{6}\right)$	$(-\alpha) = \frac{2}{3}$, $M_{\sin}(\frac{5}{3})$	$\frac{\pi}{6} + \alpha = ($	
	A. $\frac{2}{3}$	B. $-\frac{2}{3}$	C. $-\frac{\sqrt{5}}{3}$	D. $\frac{\sqrt{5}}{3}$
5.	(5分)已知 a =6,	→ e为单位向量,若向量	a与e的夹角的正弦值	$\frac{2\sqrt{2}}{3}$,则向量 $\overset{\rightarrow}{\text{ac}}\overset{\rightarrow}{\text{e}}$ 上的投影向量
	为()			
	A. Ze	B. $\pm 2\vec{e}$	C. 4√2 e	D. $\pm 4\sqrt{2} \stackrel{\rightarrow}{e}$
6.	(5分)已知函数f(;	$\mathbf{x} = \begin{cases} \mathbf{a}^{\mathbf{x}}, & \mathbf{x} < 0 \\ (\mathbf{a} - 2)\mathbf{x} + 3\mathbf{a}, & \mathbf{x} \end{cases}$,满足对任意 <i>x</i> ı≠ ≥ 0	\mathbf{x}_{2} , 都有 $\frac{\mathbf{f}(\mathbf{x}_{1})-\mathbf{f}(\mathbf{x}_{2})}{\mathbf{x}_{1}-\mathbf{x}_{2}} > 0$ 成立,
	则 a 的取值范围是()		
	A. <i>a</i> ∈ (0, 1)	B. <i>a</i> ∈ (2, +∞)	C. $a \in (0, \frac{1}{3}]$	D. $a \in [\frac{3}{4}, 2)$
7.	(5分)甲、乙、丙、	丁四人各掷骰子 5 次	(骰子出现的点数可能	(为 1, 2, 3, 4, 5, 6), 并分别记录
	自己每次出现的点数	,四人根据统计结果对	自己的试验数据分别	做了如下描述,可以判断一定出现 6
	点的描述是()			
	A. 中位数为 4, 众数	文为 4		
	B. 中位数为 3, 极差	色为 4		

C. 平均数为3, 方差为2

- D. 平均数为 4, 第 25 百分位数为 2
- 8. (5 分) $\triangle ABC$ 中, $\overrightarrow{AB} = (\sqrt{3}\sin x, \sin x)$, $\overrightarrow{AC} = (\sin x, \cos x)$. 对任意的实数 t,恒有 $|\overrightarrow{AB} t\overrightarrow{AC}| \geqslant |\overrightarrow{BC}|$,则 $\triangle ABC$ 面积的最大值为(
 - A. $\frac{1}{2}$
- B. $\frac{\sqrt{3}}{2}$
- C. 1
- D. 2
- 二、多选题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
 - (多选) 9. (5 分) 我国是世界上的快递大国,快递业务已经成为人们日常生活当中不可或缺的重要组成部分,给我们的生活带来巨大的便利,如图是 2012~2020 年我国快递业务量变化情况统计图,则关于这 9 年的统计信息,下列说法正确的是 ()

2012~2020年我国快递业务量变化情况



- A. 这9年我国快递业务量逐年增加
- B. 这9年我国快递业务量同比增速的中位数为51.4%
- C. 这9年我国快递业务量同比增速的极差超过36%
- D. 这9年我国快递业务量的平均数超过210亿件

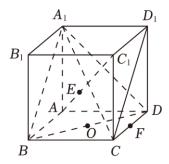
(多选) 10. (5分) 下列结论中正确的有()

- A. $y=x+\frac{1}{x}$ 的最小值是 2
- B. 如果 x>0, y>0, x+3y+xy=9, 那么 xy 的最大值为 3
- C. 函数 $f(x) = \frac{x^2 + 5}{\sqrt{x^2 + 4}}$ 的最小值为 2
- D. 如果 a > 0, b > 0, 且 $\frac{1}{a+1} + \frac{1}{b+1} = 1$, 那么 a+b 的最小值为 2

(多选) 11. (5分) 下列命题正确的是()

- A. 设π, n为非零向量,则"存在负数 λ , 使得 $\mathbf{m} = \lambda \mathbf{n}$ "是" $\mathbf{m} \cdot \mathbf{n} < \mathbf{0}$ "的充分不必要条件
- B. 点 D 是 $\triangle ABC$ 边 BC 的中点,若 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \sqrt{2} \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$,则 \overrightarrow{BA} 在 \overrightarrow{BC} 的投影向量是 \overrightarrow{BD}
- C. 点 D 是 $\triangle ABC$ 边 BC 的中点,若点 P 是线段 AD 上的动点,且满足 $\overrightarrow{BP}=\lambda$ $\overrightarrow{BA}+\mu$ \overrightarrow{BC} ,则 $\lambda\mu$ 的最大值为 $\frac{1}{8}$
 - D. 已知平面内的一组基底 $\frac{1}{e_1}$, $\frac{1}{e_2}$, 则向量 $\frac{1}{e_1}$, $\frac{1}{e_2}$, $\frac{1}{e_1}$ 不能作为一组基底

(多选)12.(5 分)如图,已知正方体 ABCD - $A_1B_1C_1D_1$ 的棱长为 1,O 为底面 ABCD 的中心, AC_1 交平 面 A_1BD 于点 E,点 F 为棱 CD 的中点,则()



- A. 四面体 D_1 ACD 的体积与表面积的数值之比为 $\frac{\sqrt{2}-1}{6}$
- B. 点 C₁ 到平面 ABD 的距离为 2
- C. 异面直线 BD 与 AC_1 所成的角为 60°
- D. 过点 A_1 , B, F 的平面截该正方体所得截面的面积为 $\frac{9}{8}$
- 三、填空题:本题共4小题,每小题5分,共20分。
- 13. (5 分) 若样本数据 x_1, x_2, \dots, x_{10} 的方差为 8, 则数据 $2x_1 1, 2x_2 1, \dots, 2x_{10} 1$ 的方差为______
- 14. (5分) 已知 $\vec{a} = (x, 1)$, $\vec{b} = (3, -1)$, 若 $\vec{a} \perp \vec{b}$, 则 $x = \underline{}$.
- 15. (5 分) 已知 $f(x) = \frac{x}{x-1}$, g(x) = mx+1 2m, 若对任意的 $x_1 \in [2, 3]$, 总存在 $x_2 \in [2, 3]$, 使 $f(x_1)$

 $=g(x_2)$ 成立,求实数m的取值范围为 $_{-----}$.

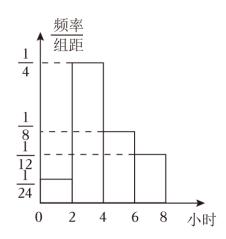
16. $(5\, \beta)$ 已知 $\omega > 0$,函数 $\mathbf{f}(\mathbf{x}) = \frac{\sqrt{2}}{2} (\sin \omega \mathbf{x} + \cos \omega \mathbf{x})$ 在 $(\frac{\pi}{2}, \pi)$ 上单调递减,则实数 ω 的取值范围是

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

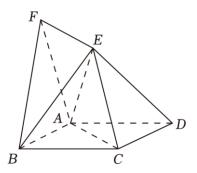
17. (10 分)读书可以增长知识,开拓视野,修身怡情.某校为了解本校学生课外阅读情况,按性别进行分层,用分层随机抽样的方法从全校学生中抽出一个容量为 100 的样本,其中男生 40 名,女生 60 名.经调查统计,分别得到 40 名男生一周课外阅读时间(单位:小时)的频数分布表和 60 名女生一周课外阅读时间(单位:小时)的频率分布直方图.

男生一周阅读时间频数分布表			
小时	频数		
[0, 2)	9		
[2, 4)	22		
[4, 6)	6		
[6, 8)	3		

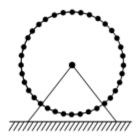
- (1) 由以上频率分布直方图估计该校女生一周阅读时间的第75百分位数;
- (2)从一周课外阅读时间为[4,6)的样本学生中按比例分配抽取7人,再从这7人中任意抽取2人,求恰好抽到一男一女的概率.



- 18. (12 分) 已知函数 $f(x) = \frac{\sqrt{3} \tan x}{\tan^2 x + 1} + \frac{1}{2} (\sin^2 x \cos^2 x)$.
 - (1) 求f(x) 在 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的最值;
 - (2) 已知锐角三角形内角 A 满足 $f(A) = \frac{1}{3}$,求 $\cos 2A$ 的值.
- 19. (12 分)如图,正方形 ABCD 和菱形 ACEF 所在平面互相垂直, $\angle ACE=60^\circ$. 四棱锥 E-ABCD 的体积是 $36\sqrt{6}$.
 - (1) 求证: *DE*//平面 *ABF*;
 - (2) 求 AB 的长度及四面体 ABEF 的体积.



- 20. (12 分) 已知函数 $f(x)=1+a(\frac{1}{2})^x+(\frac{1}{4})^x$, $g(x)=1og_{\frac{1}{2}}\frac{1-ax}{x-1}$.
 - (1) 若g(x) 为奇函数,求实数a 的值;
 - (2) 在 (1) 的条件下, 当 x∈[-3, 2]时, 函数 y=f(x)+m 存在零点, 求实数 m 的取值范围;
 - (3) 定义在 D 上的函数 f(x),如果满足:对任意 $x \in D$,存在常数 $M \ge 0$,都有 $|f(x)| \le M$ 成立,则称 f(x) 是 D 上的有界函数,其中 M 称为函数 f(x) 的一个上界.若函数 f(x) 在 $[0, +\infty)$ 上是以 5 为上界的有界函数,求实数 a 的取值范围.
- 21. (12 分)摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢往上转,可以从高处俯瞰四周景色. 位于潍坊滨海的"渤海之眼"摩天轮是世界上最大的无轴摩天轮,该摩天轮轮盘直径为 124 米,设置有 36 个座舱. 游客在座舱转到距离地面最近的位置进舱,当到达最高点时距离地面 145 米,匀速转动一周大约需要 30 分钟. 当游客甲坐上摩天轮的座舱开始计时.



- (1) 经过 t 分钟后游客甲距离地面的高度为 H 米,已知 H 关于 t 的函数关系式满足 $H(t) = A\sin(\omega t + \varphi)$ + B (其中 A > 0, $\omega > 0$, $|\varphi| \leq \frac{\pi}{2}$),求摩天轮转动一周的解析式 H(t);
 - (2) 游客甲坐上摩天轮后多长时间,距离地面的高度第一次恰好达到52米?
- (3) 若游客乙在游客甲之后进入座舱,且中间间隔 5 个座舱,游客乙进入座舱后距离地面高度能否超过游客甲,若能,是在甲进入后的多少分钟以后?
- 22. (12 分) 在锐角 $\triangle ABC$ 中,角 A, B, C 对边分别为 a, b, c,设向量 $_{\mathfrak{m}}^{+}=(a+c, a)$, $_{\mathfrak{n}}^{+}=(a-c, b)$,且 $_{\mathfrak{m}}^{+}$ \perp $_{\mathfrak{n}}^{+}$.
 - (1) 求证: *C*=2*A*:

(2) 求 $\frac{b}{a} + (\frac{2a}{c})^2$ 的取值范围.

2023-2024 学年江苏省常州一中高二(上)期初数学试卷

参考答案与试题解析

一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目 要求的。

- 1. (5 分) 已知集合 $A = \{x \mid x > 0\}$, $B = \{x \mid x^2 + 2x 3 < 0\}$, 则 $A \cap B = ($
 - A. (0, 3)
- B. (0, 1) C. $(3, +\infty)$ D. $(1, +\infty)$

【答案】B

【分析】求出集合 B,利用交集定义能求出 $A \cap B$.

【解答】解:集合 $A = \{x | x > 0\}$,

 $B = \{x | x^2 + 2x - 3 < 0\} = \{x | -3 < x < 1\},$

则 $A \cap B = (0, 1)$.

故选: B.

- 2. (5 分) 已知复数 $z=-1+\sqrt{3}i$ (i 为虚数单位),z为z 的共轭复数,若复数 $ω=\frac{z}{z}$,则 ω 的虚部为 (

 - A. $-\frac{\sqrt{3}}{2}$ B. $-\frac{\sqrt{3}}{2}$ i C. $\frac{\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{2}$ i

【答案】*C*

【分析】首先化简 ω ,再求 ω 的虚部.

【解答】解: 复数z=-1+ $\sqrt{3}$ i (i 为虚数单位), $\omega = \frac{z}{z}$,

则
$$\omega = \frac{-1 - \sqrt{3} i}{-1 + \sqrt{3} i} = \frac{(-1 - \sqrt{3} i) (-1 - \sqrt{3} i)}{(-1 + \sqrt{3} i) (-1 - \sqrt{3} i)} = \frac{1 + 2\sqrt{3} i - 3}{4}$$

$$= \frac{1}{2} + \frac{\sqrt{3}}{2} i,$$

所以 ω 的虚部为 $\frac{\sqrt{3}}{2}$.

故选: C.

- 3. (5 分) 设 m, n 是两条不同的直线, α , β 是两个不同的平面,则下列说法正确的是(
 - A. 若 $m \perp \alpha$, $n \subseteq \beta$, $m \perp n$, 则 $\alpha \perp \beta$
 - B. 若 $m//\alpha$, m//n, 则 $n//\alpha$

 - D. \overline{A} $\alpha \perp \beta$, $\alpha \cap \beta = m$, $n \perp m$, 则 $n \perp \beta$

【答案】C

【分析】对于A, α 与 β 平行或相交; 对于B, $n//\alpha$ 或 $n \subset \alpha$; 对于C, 由面面垂直的判定定理得 $\alpha \perp \beta$; 对于 D, n与相交、平行或 n \subset β.

【解答】解: m, n 是两条不同的直线, α , β 是两个不同的平面,

对于 A, 若 $m \perp \alpha$, $n \subset \beta$, $m \perp n$, 则 α 与 β 平行或相交, 故 A 错误;

对于 B, 若 m// α , m// n, 则 n// α 或 n \subset α , 故 B 错误;

对于 C,若 m//n,n \perp β,m \subset α,则 m \perp β,

由面面垂直的判定定理得 $\alpha \perp \beta$, 故 C 正确;

对于 D,若 $\alpha \perp \beta$, $\alpha \cap \beta = m$, $n \perp m$,则 n 与相交、平行或 $n \subset \beta$,故 D 错误.

故选: C.

4. (5分) 已知
$$\sin(\frac{\pi}{6} - \alpha) = \frac{2}{3}$$
,则 $\sin(\frac{5\pi}{6} + \alpha) = ($)
A. $\frac{2}{3}$ B. $-\frac{2}{3}$ C. $-\frac{\sqrt{5}}{3}$ D. $\frac{\sqrt{5}}{3}$

【答案】A

【分析】根据诱导公式求解即可.

【解答】解: 已知
$$\sin(\frac{\pi}{6}-\alpha)=\frac{2}{3}$$

则
$$\sin\left(\frac{5\pi}{6} + \alpha\right) = \sin\left[\pi - \left(\frac{5\pi}{6} + \alpha\right)\right] = \sin\left(\frac{\pi}{6} - \alpha\right) = \frac{2}{3}$$

故选: A.

- 5. (5 分) 已知 $|\vec{a}|$ =6,e为单位向量,若向量 \vec{a} 与 e的夹角的正弦值为 $2\sqrt{2}$,则向量 \vec{a} 在 e上的投影向量 为(
 - A. 2e
- B. $\pm 2\vec{e}$
- C. $4\sqrt{2}$ e D. $\pm 4\sqrt{2}$ e

【答案】B

【分析】首先求 $\cos \langle a, e \rangle$, 再求投影向量.

【解答】解: 由向量 a与 e的夹角的正弦值为 $2\sqrt{2}$,

故向量 a在 e上的投影向量为 | a | • cos ⟨a, e⟩ • e = ± 2e·

故选: B.

6. (5 分) 已知函数
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{a}^{\mathbf{x}}, & \mathbf{x} \leq 0 \\ (\mathbf{a}-2)\mathbf{x}+3\mathbf{a}, & \mathbf{x} \geqslant 0 \end{cases}$$
, 满足对任意 $x_1 \neq x_2$, 都有 $\frac{\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)}{\mathbf{x}_1 - \mathbf{x}_2} > 0$ 成立,

则 a 的取值范围是 ()

A.
$$a \in (0, 1)$$
 B. $a \in (2, +\infty)$ C. $a \in (0, \frac{1}{3}]$ D. $a \in [\frac{3}{4}, 2)$

【答案】B

【分析】根据不等式可以确定函数的单调性,根据分段函数的单调性的性质进行求解即可.

【解答】解: 不妨设
$$x_1 > x_2$$
, 由 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0 \Rightarrow f(x_1) - f(x_2) > 0 \Rightarrow f(x_1) > f(x_2)$,

因此该函数是实数集上的增函数,

$$_{\text{FEA}}$$
 $\begin{cases} a > 1 \\ a-2 > 0 \\ a^{0} \le (a-2) \cdot 0 + 3a \end{cases}$ ⇒ $a > 2$,

即 a 的取值范围是 $(2, +\infty)$.

故选: B.

- 7. (5 分) 甲、乙、丙、丁四人各掷骰子 5 次(骰子出现的点数可能为 1, 2, 3, 4, 5, 6),并分别记录自己每次出现的点数,四人根据统计结果对自己的试验数据分别做了如下描述,可以判断一定出现 6 点的描述是()
 - A. 中位数为4, 众数为4
 - B. 中位数为3, 极差为4
 - C. 平均数为3, 方差为2
 - D. 平均数为 4, 第 25 百分位数为 2

【答案】D

【分析】根据中位数,众数和极差的定义举例即可判断 AB,根据平均数和方差的定义利用反证法即可判断 C,根据百分位数和平均数的定义利用反证法即可判断 D.

【解答】解:对于A,中位数为4,众数为4,

则这 5 个数可以为 4, 4, 4, 4, 4, 故 A 不符题意;

对于B,中位数为3,极差为4,

则这 5 个数可以是 1, 1, 3, 4, 5, 故 B 不符题意;

对于C,平均数为3,方差为2,

设这 5 个数分别为 x_1 , x_2 , x_3 , x_4 , x_5 ,

则 $x_1+x_2+x_3+x_4+x_5=15$, $\frac{1}{5}[(x_1-3)^2+(x_2-3)^2+(x_3-3)^2+(x_4-3)^2+(x_5-3)^2]=2$,

若取 x_1 =6,则 $x_2+x_3+x_4+x_5$ =9,

则
$$(x_2-3)^2+(x_3-3)^2+(x_4-3)^2+(x_5-3)^2=1$$

所以
$$(x_2-3)^2 \le 1$$
, $(x_3-3)^2 \le 1$, $(x_4-3)^2 \le 1$, $(x_5-3)^2 \le 1$

所以 x2, x3, x4, x5 这四个数可以为 4, 3, 3, 3 与 2, 3, 3, 3,

这与 $x_2+x_3+x_4+x_5=9$ 矛盾,所以6不存在,故C不符题意;

对于 D, 按从小到大的顺序设这 5 个数为 a, b, c, d, e,

因为 5×25%=1.25,

所以第25百分位数为5个数中从小到大排列的第二个数,

又第25百分位数为2,

所以 a=1, b=2,

因为平均数为4,

所以 a+b+c+d+e=20,则 c+d+e=17,

若 c, d, e 三个数都不是 6, 则 $c+d+e \leq 15$,

这与 c+d+e=17 矛盾,故c,d,e 三个数一定会出现6,故D符合题意.

故选: D.

8. (5 分) $\triangle ABC$ 中, $\overrightarrow{AB} = (\sqrt{3}\sin x, \sin x)$, $\overrightarrow{AC} = (\sin x, \cos x)$. 对任意的实数 t,恒有

 $|\overrightarrow{AB} - t\overrightarrow{AC}| \geqslant |\overrightarrow{BC}|$,则 $\triangle ABC$ 面积的最大值为(

A.
$$\frac{1}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

【答案】B

【分析】首先根据向量的运算,以及向量模的几何意义,确定 $BC \perp AC$,再结合向量模的计算公式,以及面积公式,即可求解.

【解答】解:如图,设录=tAC,由向量减法的几何意义知,

当 $|\overrightarrow{AB} - t\overrightarrow{AC}| \geqslant |\overrightarrow{BC}|$ 时,有点 B 到直线 AC 的最短距离为 BC,

所以 $BC \perp AC$.

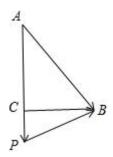
$$\mathbb{X} | \overrightarrow{AB} | = \sqrt{4 \sin^2 x} \leq_2, | \overrightarrow{AC} | = 1,$$

所以由勾股定理可得 $BC = \sqrt{AB^2 - AC^2} \leq \sqrt{4-1} = \sqrt{3}$,

故
$$\triangle ABC$$
 面积 $S = \frac{1}{2}BC \cdot AC \le \frac{\sqrt{3}}{2}$

故 $\triangle ABC$ 面积的最大值为 $\frac{\sqrt{3}}{2}$.

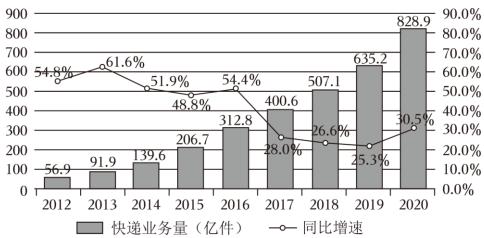
故选: B.



二、多选题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。

(多选) 9. (5 分) 我国是世界上的快递大国,快递业务已经成为人们日常生活当中不可或缺的重要组成部分,给我们的生活带来巨大的便利,如图是 2012~2020 年我国快递业务量变化情况统计图,则关于这 9 年的统计信息,下列说法正确的是 ()

2012~2020年我国快递业务量变化情况



- A. 这9年我国快递业务量逐年增加
- B. 这9年我国快递业务量同比增速的中位数为51.4%
- C. 这9年我国快递业务量同比增速的极差超过36%
- D. 这9年我国快递业务量的平均数超过210亿件

【答案】ACD

【分析】分别观察这9年我国快递业务量和各年我国快递业务量同比增速,对选项一一分析,可得结论.

【解答】解:由条形图可得,这9年我国快递业务量逐年增加,故A正确;

将各年我国快递业务量同比增速按从小到大排列得: 25.3%, 26.6%, 28.0%, 30.5%, 48.0%, 51.4%, 51.9%, 54.8%, 61.6%,

故中位数为第五个数 48.0%, 故 B 错误;

这 9 年我国快递业务量同比增速的极差为 61.6% - 25.3% = 36.3% > 36%, 故 C 正确;

由条形图可得,自 2016 年起,各年的快递业务量远超过 210 亿件,故快递业务量的平均数超过 210 亿件,故 D 正确.

故选: ACD.

(多选) 10. (5分) 下列结论中正确的有()

A.
$$y=x+\frac{1}{x}$$
的最小值是 2

B. 如果 x>0, y>0, x+3y+xy=9, 那么 xy 的最大值为 3

C. 函数
$$f(x) = \frac{x^2 + 5}{\sqrt{x^2 + 4}}$$
 的最小值为 2

D. 如果
$$a > 0$$
, $b > 0$, 且 $\frac{1}{a+1} + \frac{1}{b+1} = 1$, 那么 $a+b$ 的最小值为 2

【答案】BD

【分析】对 A,如果 x < 0,那么 $y = x + \frac{1}{x} < 0$,命题不成立;对 B,使用基本不等式得

9=**x**+3**y**+**xy** ≥ 2√3√**xy** +**xy**,即可得 *xy* 的最大值;

对
$$C$$
, 函数 $f(x) = \sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}}$, 当且仅当 $\sqrt{x^2 + 4} = 1$ 时取等号,此时 x 无解;

对 D,根据题意构造 a+b=(a+1)+(b+1)-2,将 "1" 替换为 $\frac{1}{a+1}+\frac{1}{b+1}$,代入用基本不等式求解.

【解答】解:对于A,如果x < 0,那么 $y = x + \frac{1}{x} < 0$,最小值是2不成立,故A错误;

对于 B , 如果 x > 0 , y > 0 , x+3y+xy = 9 , 则 $9=x+3y+xy \ge 2\sqrt{3}\sqrt{xy}+xy$, 整理 得 $(\sqrt{xy})^2+2\sqrt{3}\sqrt{xy}-9 \le 0$

解得 $0 < \sqrt{xy} < \sqrt{3}$, 当且仅当 y=1, x=3 时取等号,所以 xy 的最大值为 3,故 B 正确;

对于
$$C$$
,函数 $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^2 + 5}{\sqrt{\mathbf{x}^2 + 4}} = \sqrt{\mathbf{x}^2 + 4} + \frac{1}{\sqrt{\mathbf{x}^2 + 4}} \ge 2$,当且仅当 $\sqrt{\mathbf{x}^2 + 4} = 1$ 时取等号,此时 x 无解,

故不能取得最小值 2, 故 C 错误;

对 于
$$D$$
 , 如 果 a $>$ 0 , b $>$ 0 , 且 $\frac{1}{a+1}+\frac{1}{1+b}=1$, 那 么

$$a+b=(a+1)+(b+1)-2=[(a+1)+(b+1)]\times(\frac{1}{a+1}+\frac{1}{b+1})-2$$

$$(1+1+\frac{b+1}{a+1}+\frac{a+1}{b+1})-2$$
 $\ge 2+2\sqrt{\frac{b+1}{a+1}}-2=2$, 当且仅当 $a=1$, $b=1$ 时取等号,故 D 正确.

故选: BD.

(多选)11.(5分)下列命题正确的是()

- A. 设 π , n为非零向量,则"存在负数 λ ,使得 $m=\lambda$ n"是" $m \bullet n < 0$ "的充分不必要条件
- B. 点 D 是 $\triangle ABC$ 边 BC 的中点,若 $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \sqrt{2} \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$,则 \overrightarrow{BA} 在 \overrightarrow{BC} 的投影向量是 \overrightarrow{BD}
- C. 点 D 是 $\triangle ABC$ 边 BC 的中点,若点 P 是线段 AD 上的动点,且满足 $\overrightarrow{BP}=$ λ $\overrightarrow{BA}+\mu$ \overrightarrow{BC} ,则 $\lambda\mu$ 的最大值为 $\frac{1}{8}$
 - D. 已知平面内的一组基底 $\frac{1}{e_1}$, $\frac{1}{e_2}$, 则向量 $\frac{1}{e_1}$ + $\frac{1}{e_2}$ 不能作为一组基底

【答案】ABC

【分析】A中,分别判断充分性和必要性是否成立即可;

定义,即可出BD是BA在BC的投影向量;

C中,根据 A, P, D 三点共线,利用 $\overrightarrow{BP} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BC}$,求出函数 $y = \lambda \mu$ 的最大值即可.

D中,根据不共线的两个向量可以作为一组基底,判断即可.

【解答】解:对于A,存在负数 λ ,使得 $\mathfrak{m}=\lambda$ \mathfrak{n} ,所以 \mathfrak{m}^{\bullet} $\mathfrak{n}=\lambda$ \mathfrak{n}^{-2} <0,充分性成立;

当 $\mathbf{m} \bullet \mathbf{n} < 0$ 时,不一定有"存在负数 λ ,使得 $\mathbf{m} = \lambda \mathbf{n}$ ",必要性不成立;

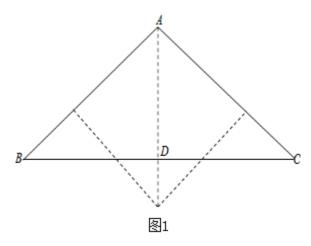
所以是充分不必要条件,选项A正确.

对于 B, \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 分别表示平行于 \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} 的单位向量,

由平面向量加法可知: $\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} + \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$ 为 $\angle BAC$ 的平分线表示的向量,

因为
$$\overrightarrow{AB}$$
 + \overrightarrow{AC} = $\sqrt{2}$ \overrightarrow{AD} , 所以 \overrightarrow{AD} 为 $\angle BAC$ 的平分线,

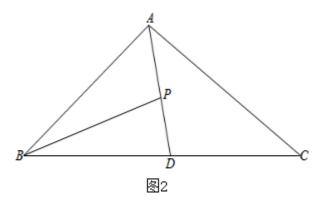
又因为AD为BC的中线,所以 $AD \perp BC$,如图 1 所示:



$$\overrightarrow{BA}$$
在 \overrightarrow{BC} 的投影为 $|\overrightarrow{BC}|\cos B = |\overrightarrow{BA}| \times \frac{|\overrightarrow{BD}|}{|\overrightarrow{BA}|} = |\overrightarrow{BD}|,$

所以 \overrightarrow{BD} 是 \overrightarrow{BA} 在 \overrightarrow{BC} 的投影向量,选项 \overrightarrow{B} 正确;

对于C,如图2所示:



因为P在AD上,即A,P,D三点共线,

设
$$\overrightarrow{\mathsf{BP}} = t\overrightarrow{\mathsf{BA}} + (1 - t)$$
 $\overrightarrow{\mathsf{BD}}$, $0 \leqslant t \leqslant 1$,

又因为
$$\overrightarrow{BD} = \frac{1}{2}\overrightarrow{BC}$$
, 所以 $\overrightarrow{BP} = \iota \overrightarrow{BA} + \frac{1-t}{2}\overrightarrow{BC}$,

因为
$$\overrightarrow{BP} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BC}$$
,则 $\left\{ \begin{array}{l} \lambda = t \\ \mu = \frac{1-t}{2}, \ 0 \le t \le 1, \end{array} \right.$

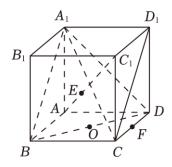
$$\Rightarrow y = \lambda \mu = t \cdot \frac{1-t}{2} = -\frac{1}{2} \left(t - \frac{1}{2} \right)^2 + \frac{1}{8},$$

$$t=\frac{1}{2}$$
时, λ μ 取得最大值为 $\frac{1}{8}$,选项 C 正确.

对于D,平面内的一组基底 e_1 , e_2 ,则向量 e_1+e_2 , e_1-e_2 不共线,可以作为一组基底,选项D错误.

故选: ABC.

(多选)12.(5 分)如图,已知正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 1,O 为底面 ABCD 的中心, AC_1 交平 面 A_1BD 于点 E,点 F 为棱 CD 的中点,则(



- A. 四面体 D_1 ACD 的体积与表面积的数值之比为 $\frac{\sqrt{2}-1}{6}$
- B. 点 C₁ 到平面 ABD 的距离为 2
- C. 异面直线 BD 与 AC_1 所成的角为 60°
- D. 过点 A_1 , B, F 的平面截该正方体所得截面的面积为 $\frac{9}{8}$

【答案】AD

【分析】求得四面体 D_1 - A_2CD 的体积与表面积,可判断 A_1 利用 BD 上平面 ACC_1A_1 ,可判断 C_1 利用 C 可证 AC_1 上平面 ABD,进而求得点 C_1 到平面 ABD 的距离判断 D_1 求得截面面积判断 D_2

【解答】解:对于A,因为正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为1,

所以四面体 $D_1 - A_1CD$ 的体积为 $\frac{1}{3} \times \frac{1}{2} \times 1 \times 1 = \frac{1}{6}$,

表面积为 $\frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times 1 \times \sqrt{2} + \frac{1}{2} \times 1 \times \sqrt{2} = \sqrt{2} + 1$

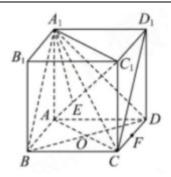
所以四面体 D_1 - A_2CD 的体积与表面积的数值之比为 $\frac{1}{6}$ $\sqrt{2}$ +1 = $\frac{\sqrt{2}-1}{6}$,所以 A 正确,

对于 C, 因为 C_1C 上平面 ABCD, BD 二平面 ABCD, 所以 $BD \perp C_1C$,

又 $BD \perp AC$, $AC \cap C_1C = C$, AC, $C_1C \subset$ 平面 ACC_1A_1 ,

所以 BD 上平面 ACC_1A_1 ,又 AC_1 ⊂平面 ACC_1A_1 ,

所以 $BD \perp AC_1$, 即异面直线 $BD = AC_1$ 所成的角为 90° , 故 C 不正确;



对于 B, 根据证明 $BD \perp AC_1$ 的方法, 同理可得 $AC_1 \perp A_1 B$,

因为 $BD \cap AB = B$, BD, $AB \subset \mathbb{P}$ 面 ABD, 所以 $AC_1 \perp \mathbb{P}$ 面 ABD,

则 C_1E 的长度就是点 C_1 到平面 A_1BD 的距离,显然 E 为正三角形 A_1BD 的中心,

因为正方体 $ABCD - AB_1C_1D_1$ 的棱长为 1,所以正三角形 ABD 的边长为 $\sqrt{2}$,

所以
$$A_1E = \frac{2}{3} \times \frac{\sqrt{3}}{2} \times \sqrt{2} = \frac{\sqrt{6}}{3}$$
,又 $A_1C_1 = \sqrt{2}$,

所以
$$CE = \sqrt{\mathbf{A}_1 \mathbf{C}_1^2 - \mathbf{A}_1 \mathbf{E}^2} = \sqrt{2 - (\frac{\sqrt{6}}{3})^2} = \frac{2\sqrt{3}}{3}$$

即点 C_1 到平面 ABD 的距离为 $\frac{2\sqrt{3}}{3}$,故 B 不正确;

对于 D, 取 D_1D 的中点 G, 连接 FG, GA_1 , BF, A_1B ,

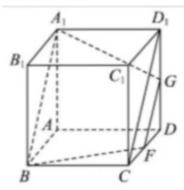
因为 $FG//CD_1$, $CD_1//A_1B$, $FG=\frac{1}{2}CD_1$, $CD_1=A_1B$,

所以 $FGMA_1B$, $FG = \frac{1}{2}A_1B$.

因为BF=
$$\sqrt{BC^2+CF^2}$$
= $\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$, $A_1G=\sqrt{A_1D_1^2+D_1G^2}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$,

所以 $BF = A_1G$, 所以四边形 A_1BFG 为等腰梯形,

所以等腰梯形 A_1BFG 就是过点 A_1 , B, F 的平面截该正方体所得截面,如图:



因为
$$A_1B = \sqrt{2}$$
, $FG = \frac{\sqrt{2}}{2}$, $A_1G = BF = \frac{\sqrt{5}}{2}$,

所以等腰梯形
$$A_1BFG$$
 的高为 $h=\sqrt{A_1G^2-(\frac{A_1B-FG}{2})^2}=\sqrt{\frac{5}{4}-(\frac{\sqrt{2}-\frac{\sqrt{2}}{2}}{2})^2}=\frac{3\sqrt{2}}{4}$

所以等腰梯形 A_2BFG 的面积为 $\frac{1}{2}$ (A_1B+FG) • $h=\frac{1}{2}$ ($\sqrt{2}+\frac{\sqrt{2}}{2}$) $\times \frac{3\sqrt{2}}{4}=\frac{9}{8}$,

即过点 A_1 , B, F 的平面截该正方体所得截面的面积为 $\frac{9}{8}$, 故 D 正确.

故选: AD.

三、填空题:本题共4小题,每小题5分,共20分。

13. (5 分) 若样本数据 x_1 , x_2 , …, x_{10} 的方差为 8, 则数据 $2x_1$ - 1, $2x_2$ - 1, …, $2x_{10}$ - 1 的方差为 32 __.

【答案】见试题解答内容

【分析】利用方差的性质直接求解.

【解答】解: : 样本数据 x_1 , x_2 , ..., x_{10} 的方差为 8,

∴数据 2x₁ - 1, 2x₂ - 1, ···, 2x₁₀ - 1 的方差为:

 $2^2 \times 8 = 32$.

故答案为: 32.

14. (5分) 已知
$$\vec{a} = (x, 1)$$
, $\vec{b} = (3, -1)$, 若 $\vec{a} \perp \vec{b}$, 则 $x = -\frac{1}{3}$.

【答案】 $\frac{1}{3}$.

【分析】代入平面向量垂直的坐标表示公式,即可求解.

【解答】解: 因为 $_{a}^{+}=(x, 1), \dot{b}=(3, -1), \dot{L}_{a}^{+} \perp \dot{b},$

所以 $\vec{a} \cdot \vec{b} = 3x - 1 = 0$,解得 $\vec{a} = \frac{1}{3}$.

故答案为: $\frac{1}{3}$.

15. (5 分) 已知 $f(x) = \frac{x}{x-1}$, g(x) = mx+1 - 2m, 若对任意的 $x_1 \in [2, 3]$, 总存在 $x_2 \in [2, 3]$, 使 $f(x_1)$

 $=g(x_2)$ 成立,求实数 m 的取值范围为 $\underline{\{m|m\geq 1\}}$.

【答案】{*m*|*m*≥1}.

【分析】根据题意,分别求两个函数的值域,再转化为子集问题,即可求解.

【解答】解: 若对任意的 $x_1 \in [2, 3]$,总存在 $x_2 \in [2, 3]$,使 $f(x_1) = g(x_2)$ 成立,

只需在区间[2, 3]上的函数 y=f(x) 的值域为函数 y=g(x) 的值域的子集,

因为函数 $f(x)=1+\frac{1}{x-1}$

所以函数f(x)在[2,3]上单调递减,

所以函数f(x) 的值域为 $\left[\frac{3}{2}, 2\right]$.

对函数 $g(x) = mx+1 - 2m, x \in [2, 3].$

①当m=0时,g(x)为常数1,不符合题意,舍去;

②当 m > 0 时,g(x) 的值域为[1, m+1],此时只需 $m+1 \ge 2$,解得 $m \ge 1$;

③当m < 0时,g(x)的值域为[m+1, 1],不符合题意,舍去.

综上,m的取值范围为{m|m ≥ 1}.

故答案为: $\{m|m≥1\}$.

16. (5分) 已知 $\omega > 0$,函数 $f(x) = \frac{\sqrt{2}}{2} (\sin \omega x + \cos \omega x)$ 在 $(\frac{\pi}{2}, \pi)$ 上单调递减,则实数 ω 的取值范围是 $-[\frac{1}{2}, \frac{5}{4}]$ —·

【答案】
$$[\frac{1}{2}, \frac{5}{4}]$$
.

【分析】由题意 $f(x)=\sin(\omega_x+\frac{\pi}{4})$,再根据正弦函数的单调区间,列出区间端点满足的不等式求解即可.

【解答】解: 由于函数
$$f(x) = \frac{\sqrt{2}}{2} (\sin \omega x + \cos \omega x) = \sin (\omega x + \frac{\pi}{4})$$

因为 $\omega > 0$,函数 $f(x) = \sin(\omega_x + \frac{\pi}{4})$ 在 $(\frac{\pi}{2}, \pi)$ 上单调递减,

所以
$$T = \frac{2\pi}{\omega} \gg_2 (\pi - \frac{\pi}{2})$$
,可得 $0 < \omega \le 2$.

所以
$$\left\{ \begin{array}{c} \frac{\omega \pi}{2} + \frac{\pi}{4} \geqslant \frac{\pi}{2} \\ \omega \pi + \frac{\pi}{4} \leqslant \frac{3\pi}{2} \end{array} \right.$$
,解得 $\left\{ \begin{array}{c} \frac{1}{2} \leqslant \omega \leqslant \frac{5}{4} \end{array} \right.$

故答案为: $\left[\frac{1}{2}, \frac{5}{4}\right]$.

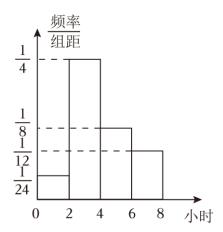
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

17. (10 分)读书可以增长知识,开拓视野,修身怡情.某校为了解本校学生课外阅读情况,按性别进行分层,用分层随机抽样的方法从全校学生中抽出一个容量为 100 的样本,其中男生 40 名,女生 60 名.经调查统计,分别得到 40 名男生一周课外阅读时间(单位:小时)的频数分布表和 60 名女生一周课外阅读时间(单位:小时)的频率分布直方图.

男生一周阅读时间频数分布表		
小时	频数	

[0, 2)	9
[2, 4)	22
[4, 6)	6
[6, 8)	3

- (1) 由以上频率分布直方图估计该校女生一周阅读时间的第75百分位数;
- (2)从一周课外阅读时间为[4,6)的样本学生中按比例分配抽取7人,再从这7人中任意抽取2人,求恰好抽到一男一女的概率.



【答案】(1) $\frac{16}{3}$;

 $(2) \frac{10}{21}$.

【分析】(1)根据百分数的定义,结合频率分布直方图可得答案;

(2)由频数分布表,频率分布直方图知,一周课外阅读时间为[4,6)的学生中男生有6人,女生有15人,按照比例抽样,利用古典概型可解.

【解答】解:(1)设女生一周阅读时间的75%分位数为a,

$$\sqrt{\frac{1}{24}} \times 2 + \frac{1}{4} \times 2 + \frac{1}{8} (a-4) = \frac{3}{4},$$

解得 $a = \frac{16}{3}$;

- (2) 由频数分布表, 频率分布直方图知,
- 一周课外阅读时间为[4,6)的学生中男生有6人,女生有 $\frac{1}{8}$ ×2×60=15 (人),

若从中按比例分别抽取7人,则男生有2人,记为a₁,a₂,

女生有 5 人, 记为 b1, b2, b3, b4, b5,

则样本空间 $\Omega = \{a_1a_2, a_1b_1, a_1b_2, a_1b_3, a_1b_4, a_1b_5, a_2b_1, a_2b_2, a_2b_3, a_2b_4, a_2b_5, b_1b_2, b_1b_3, b_1b_4, a_2b_5, a_2b_4, a_2b_5, a_2b_5,$

 b_1b_5 , b_2b_3 , b_2b_4 , b_2b_5 , b_3b_4 , b_3b_5 , b_4b_5 },

共有21个样本点,

记事件 A="恰好一男一女",

则 $A = \{a_1b_1, a_1b_2, a_1b_3, a_1b_4, a_1b_5, a_2b_1, a_2b_2, a_2b_3, a_2b_4, a_2b_5\}$ 包含 10 个样本点,

故所求概率 $P(A) = \frac{10}{21}$.

18. (12 分) 已知函数
$$f(x) = \frac{\sqrt{3} \tan x}{\tan^2 x + 1} + \frac{1}{2} (\sin^2 x - \cos^2 x)$$
.

(1) 求
$$f(x)$$
 在 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的最值;

(2) 已知锐角三角形内角 A 满足 $f(A) = \frac{1}{3}$,求 $\cos 2A$ 的值.

【答案】(1) 最大值 $\frac{\sqrt{3}}{2}$, 最小值 - 1;

(2)
$$\frac{2\sqrt{6}-1}{6}$$
.

【分析】(1)根据同角基本关系式及倍角公式,辅助角公式进行化简,再利用正弦函数的性质求得答案;

(2) 由已知结合平方关系求得 $\cos(2A-\frac{\pi}{6})$,将 $2A=(2A-\frac{\pi}{6})+\frac{\pi}{6}$,结合两角和的余弦公式化简得出答案.

【解答】解: (1)
$$f(x) = \frac{\sqrt{3}\tan x}{\tan^2 x + 1} + \frac{1}{2} (\sin^2 x - \cos^2 x) = \frac{\sqrt{3}\frac{\sin x}{\cos x}}{\frac{\sin^2 x}{\cos^2 x} + 1} + \frac{1}{2} (\sin^2 x - \cos^2 x)$$

$$= \frac{\sqrt{3}\operatorname{sinxcosx}}{\sin^2 x + \cos^2 x} - \frac{1}{2}(\cos^2 x - \sin^2 x) = \frac{\sqrt{3}}{2}\sin^2 x - \frac{1}{2}\cos^2 x = \sin(2x - \frac{\pi}{6}),$$

因为
$$x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
,所以 $2x - \frac{\pi}{6} \in \left[-\frac{2\pi}{3}, \frac{\pi}{3}\right]$

所以
$$2\mathbf{x} - \frac{\pi}{6} = \frac{\pi}{3}$$
时,即 $\mathbf{x} = \frac{\pi}{4}$ 时, $f(x)$ 取得最大值 $\frac{\sqrt{3}}{2}$;

$$2x - \frac{\pi}{6} = -\frac{\pi}{2}$$
时,即 $x = -\frac{\pi}{6}$ 时, $f(x)$ 取得最小值 - 1.

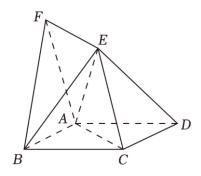
(2) 因为
$$f(A) = \frac{1}{3}$$
,所以 $f(A) = \sin(2A - \frac{\pi}{6}) = \frac{1}{3} < \frac{1}{2}$

又
$$_0$$
< $_A$ < $\frac{\pi}{2}$,所以 $_0$ < $_2$ A- $\frac{\pi}{6}$ < $\frac{\pi}{6}$.

因为
$$\sin(2A-\frac{\pi}{6})=\frac{1}{3}$$
,所以 $\cos(2A-\frac{\pi}{6})=\sqrt{1-\sin^2(2A-\frac{\pi}{6})}=\frac{2\sqrt{2}}{3}$,

所以
$$\cos 2A = \cos \left[\left(2A - \frac{\pi}{6} \right) + \frac{\pi}{6} \right] = \cos \left(2A - \frac{\pi}{6} \right) \cos \frac{\pi}{6} - \sin \left(2A - \frac{\pi}{6} \right) \sin \frac{\pi}{6} = \frac{2\sqrt{2}}{3} \times \frac{\sqrt{3}}{2} - \frac{1}{3} \times \frac{1}{2} = \frac{2\sqrt{6} - 1}{6}.$$

- 19. (12 分)如图,正方形 ABCD 和菱形 ACEF 所在平面互相垂直, $\angle ACE=60^\circ$. 四棱锥 E-ABCD 的体积是 $36\sqrt{6}$.
 - (1) 求证: DE//平面 ABF;
 - (2) 求 AB 的长度及四面体 ABEF 的体积.



【答案】(1) 见解析.

(2) AB=6,四面体 ABEF 的体积为 $18\sqrt{6}$.

【分析】(1) 推导出 AB // DC, AF // CE, 从而平面 ABF // 平面 CDE, 由此能证明 DE // 平面 ABF.

(2) 连结 $AC \setminus BD$,相交于点 O,连结 EO,推导出 EO 上平面 ABCD,BO 上平面 ACEF,四面体 ABEF 在面 AEF 上的高 $BO=3\sqrt{3}$,由此能求出四面体 ABEF 的体积。

【解答】(1) 证明: : 四边形 ABCD 是正方形, 四边形 ACEF 是菱形,

- $\therefore AB//DC$, AF//CE, $\exists AB \cap AF = A$, $CD \cap CE = C$,
- ∴平面 ABF // 平面 CDE,
- ∵DE⊂平面 CDE, ∴DE // 平面 ABF.
- (2)解:连结AC、BD,相交于点O,连结EO,则O为AC的中点,
- ∵四边形 ACEF 是菱形, $\angle ACE = 60^{\circ}$,∴ $\triangle ACE$ 是正三角形,
- $\therefore EO \perp AC$
- ∵平面 ABCD ⊥平面 ACEF, 交线为 AC,
- ∴EO 上平面 ABCD,

同理,得BO上平面ACEF,

设正方形 ABCD 的边长为 a,则 $AC=BD=\sqrt{2}$ a, $BO=\frac{\sqrt{6}}{2}$ a,

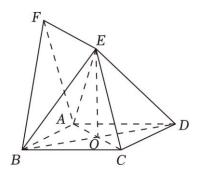
∴
$$V_{E-ABCD} = \frac{1}{3} a^2 \times \frac{\sqrt{6}}{2} a = \frac{\sqrt{6}}{6} a^3 = 36\sqrt{6}$$
, 解得 $a = 6$,

 $\therefore AB = 6$

$$\therefore S_{\triangle AEF} = \frac{1}{2} \times (\sqrt{2} a)^2 \times \sin 60^\circ = 18\sqrt{3},$$

四面体 *ABEF* 在面 *AEF* 上的高 $BO=3\sqrt{3}$,

∴四面体 ABEF 的体积 $V_{B-AEF} = \frac{1}{3} \times 18\sqrt{3} \times 3\sqrt{2} = 18\sqrt{6}$.



20. (12 分) 已知函数
$$f(x)=1+a(\frac{1}{2})^x+(\frac{1}{4})^x$$
, $g(x)=1$ o $g_{\frac{1}{2}}\frac{1-ax}{x-1}$.

- (1) 若g(x) 为奇函数,求实数a 的值;
- (2) 在 (1) 的条件下, 当 x∈[-3, 2]时, 函数 y=f(x)+m 存在零点, 求实数 m 的取值范围;
- (3) 定义在 D 上的函数 f(x),如果满足:对任意 $x \in D$,存在常数 $M \ge 0$,都有 $|f(x)| \le M$ 成立,则称 f(x) 是 D 上的有界函数,其中 M 称为函数 f(x) 的一个上界。若函数 f(x) 在 $[0, +\infty)$ 上是以 5 为 上界的有界函数,求实数 a 的取值范围。

【答案】(1) a=-1;

(2)
$$[-57, -\frac{3}{4}];$$

(3) [-7, 3].

【分析】(1)根据奇函数的定义即可化简求解,

- (2) 利用换元法以及二次函数的性质即可求解最值,
- (3) 利用对勾函数的单调性,分别利用函数单调性求解 F(t), G(t) 的最值即可求解.

【解答】解: (1) 因为 g(x) 为奇函数,所以对定义域内的 x,有 g(-x) = -g(x) 恒成立,

即
$$\log_{\frac{1}{2}} \frac{1+ax}{-x-1} = -\log_{\frac{1}{2}} \frac{1-ax}{x-1}$$
,即 $\frac{1+ax}{-x-1} = \frac{x-1}{1-ax}$,解得 $a = \pm 1$,

经检验, a=1 不合题意, 故 a=-1;

(2)
$$\pm$$
 (1) $\#_f(x) = 1 - (\frac{1}{2})^x + (\frac{1}{4})^x$,

则 $h(t) = t^2 - t + 1$,其对称轴为 $t = \frac{1}{2}$,

当
$$t = \frac{1}{2}$$
时, $h(t)_{min} = h(\frac{1}{2}) = \frac{3}{4}$,当 $t = 8$ 时, $h(t)_{max} = h(8) = 57$,

所以f(x) 值域为 $[\frac{3}{4}, 57]$,

又因为函数 y=f(x)+m 存在零点,等价于方程 m=-f(x) 有解,

所以实数 m 的取值范围是 $[-57, -\frac{3}{4}]$;

(3) 由己知, $|f(x)| \leq 5$ 在[0, +∞) 上恒成立,

即 - 5 $\leqslant f(x) \leqslant$ 5 在[0, + ∞) 上恒成立,

化简得
$$-6 \cdot 2^{x} - (\frac{1}{2})^{x} \le a \le 4 \cdot 2^{x} - (\frac{1}{2})^{x}$$
在[0, + ∞)上恒成立,

所以
$$[-6 \cdot 2^x - (\frac{1}{2})^x]_{max} \le a \le [4 \cdot 2^x - (\frac{1}{2})^x]_{min}$$

设 $t=2^x$, 因为 $x \in [0, +\infty)$, 即得 $t \ge 1$,

$$记F(t) = -6t - \frac{1}{t}, G(t) = 4t - \frac{1}{t},$$

易得 G(t) 在[1, + ∞) 上单调递增,所以 G(t) min = G(1) = 3,

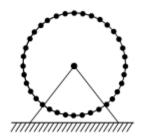
由于
$$F(t) = -6t - \frac{1}{t} = -(6t + \frac{1}{t}) \le -2\sqrt{6}$$
当且仅当 $t = \frac{\sqrt{6}}{6}$ 时取等号,

由于 $t \ge 1$, 故根据对勾函数的性质可知 F(t) 在[1, + ∞) 上单调递减,

故
$$F(t)_{max} = F(1) = -7$$
,

因此实数 a 的取值范围是[-7, 3].

21. (12 分)摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢往上转,可以从高处俯瞰四周景色. 位于潍坊滨海的"渤海之眼"摩天轮是世界上最大的无轴摩天轮,该摩天轮轮盘直径为 124 米,设置有 36 个座舱. 游客在座舱转到距离地面最近的位置进舱,当到达最高点时距离地面 145 米,匀速转动一周大约需要 30 分钟. 当游客甲坐上摩天轮的座舱开始计时.



- (1) 经过 t 分钟后游客甲距离地面的高度为 H 米,已知 H 关于 t 的函数关系式满足 $H(t) = A\sin(\omega t + \varphi)$ + B (其中 A > 0, $\omega > 0$, $| \varphi | \leq \frac{\pi}{2}$),求摩天轮转动一周的解析式 H(t);
 - (2) 游客甲坐上摩天轮后多长时间,距离地面的高度第一次恰好达到52米?
- (3) 若游客乙在游客甲之后进入座舱,且中间间隔 5 个座舱,游客乙进入座舱后距离地面高度能否超过游客甲,若能,是在甲进入后的多少分钟以后?

【答案】(1)
$$H(t) = 62\sin(\frac{\pi}{15}t - \frac{\pi}{2}) + 83, \ 0 \le t \le 30;$$

- (2) t=5;
- (3) 在甲进入后的 $\frac{35}{2}$ 分钟以后游客乙进入座舱后距离地面高度能超过游客甲.

【分析】(1) 根据函数关系式 $H(t) = A\sin(\omega t + \varphi) + B$,求出 $A \setminus B \setminus \varphi$ 和 ω 的值即可得解;

- (2) 令H(t) = 52, 求出 $t \in (0, 30)$ 内的值即可;
- (3)根据游客甲距离地面高度解析式 H_{P} 和乙距离地面高度解析式 H_{Z} ,利用三角函数的图象计算 H_{Z} > H_{P} 时 t 的范围即可.

【解答】解: (1) H 关于 t 的函数关系式为 H (t) = $A\sin(\omega t + \varphi) + B$,

由
$${B+A=145 \atop B-A=21}$$
,解得 $A=62$, $B=83$,

又函数周期为30,

所以
$$ω = \frac{2\pi}{30} = \frac{\pi}{15}$$
,

可得
$$H(t) = 62\sin(\frac{\pi}{15}t + \phi) + 83$$
,

$$\mathbb{Z}H(0) = 62\sin(\frac{\pi}{15} \times 0 + \varphi) + 83 = 21,$$

所以
$$\sin \varphi = -1$$
, $\varphi = -\frac{\pi}{2}$,

所以摩天轮转动一周的解析式为: $H(t) = 62\sin\left(\frac{\pi}{15}t - \frac{\pi}{2}\right) + 83, \ 0 \le t \le 30;$

(2)
$$H(t) = 62\sin\left(\frac{\pi}{15}t - \frac{\pi}{2}\right) + 83 = -62\cos\frac{\pi}{15}t + 83$$
,

所以 -
$$62\cos\frac{\pi}{15}t + 83 = 52$$
, $\cos\frac{\pi}{15}t = \frac{1}{2}$,

所以 t=5;

(3) 由题意知,经过t分钟后游客甲距离地面高度解析式为 $H_{\text{\tiny H}}=-62\cos\frac{\pi}{15}t+83$,

乙与甲间隔的时间为
$$\frac{30}{36} \times 6=5$$
 分钟,

所以乙距离地面高度解析式为 $H_Z = -62\cos\frac{\pi}{15}(t-5) + 83$, $5 \le t \le 30$,

所以两人离地面的高度差
$$h=H_{\mathbb{H}}-H_{\mathbb{Z}}=-62\cos\frac{\pi}{15}t+62\cos\frac{\pi}{15}(t-5)=62\sin(\frac{\pi}{15}t-\frac{\pi}{6})$$
,

因为 5
$$\leq$$
t \leq 30,所以 $\frac{\pi}{15}$ t - $\frac{\pi}{6}$ \in [$\frac{\pi}{6}$, $\frac{11\pi}{6}$],

令
$$h < 0$$
 得, $\frac{\pi}{15}t - \frac{\pi}{6} \in [\pi, \frac{11\pi}{6}]$,即 $t \in [\frac{35}{2}, 30]$

所以在甲进入后的 $\frac{35}{2}$ 分钟以后游客乙进入座舱后距离地面高度能超过游客甲.

22. (12 分) 在锐角 $\triangle ABC$ 中,角 A, B, C 对边分别为 a, b, c, 设向量 $_{\mathfrak{m}}^{\rightarrow}=(\mathfrak{a}+\mathfrak{c},\mathfrak{a})$, $_{\mathfrak{n}}^{\rightarrow}=(\mathfrak{a}-\mathfrak{c},\mathfrak{b})$,

且献上立.

- (1) 求证: C=2A;
- (2) 求 $\frac{b}{a} + (\frac{2a}{c})^2$ 的取值范围.

【答案】见试题解答内容

【分析】(1)根据余弦定理,正弦定理,解三角方程,即可证明;

(2)根据正弦定理将边转化为角,从而构建关于角 A 的函数,再利用换元法及对勾函数的性质,即可求解.

【解答】解: (1) 证明: $\overrightarrow{r}_{m}=(a+c, a), \overrightarrow{n}=(a-c, b),$ 且前 $\perp \overrightarrow{n},$

$$\therefore \overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{n}} = a^2 - c^2 + ab = 0,$$

$$X = \frac{a^2 + b^2 - c^2}{2ab} = \cos C$$
, $\therefore a^2 - c^2 = 2ab\cos C - b^2$,

- $\therefore 2ab\cos C b^2 + ab = 0$
- $\therefore 2a\cos C b + a = 0$, ∴由正弦定理可得:

 $2\sin A\cos C - \sin B + \sin A = 0$,

- $\therefore 2\sin A\cos C \sin (A+C) + \sin A = 0$
- $\therefore \sin A \cos C \cos A \sin C = \sin (-A),$
- ∴ $\sin(A C) = \sin(-A)$,又A,C为三角形的内角,

$$\therefore A - C = -A, \quad \therefore C = 2A;$$

(2) 根据正弦定理可得
$$\frac{b}{a} + (\frac{2a}{c})^2 = \frac{\sin B}{\sin A} + \frac{4\sin^2 A}{\sin^2 C}$$

$$=\frac{\sin(\pi-3A)}{\sin^2 A} + \frac{4\sin^2 A}{\sin^2 2A} = \frac{\sin3A}{\sin^2 A} + \frac{4\sin^2 A}{4\sin^2 A\cos^2 A}$$

$$= \frac{\sin A \cos 2A + \cos A \sin 2A}{\sin A} + \frac{1}{\cos^2 A}$$

$$=\cos 2A + 2\cos^2 A + \frac{1}{\cos^2 A}$$

$$=4\cos^2 A + \frac{1}{\cos^2 A} - 1$$

又 $\triangle ABC$ 为锐角三角形,

$$\therefore \begin{cases} 0 < A < \frac{\pi}{2} \\ 0 < B = \pi - 3A < \frac{\pi}{2}, :: A \in (\frac{\pi}{6}, \frac{\pi}{4}), \\ 0 < C = 2A < \frac{\pi}{2} \end{cases}$$

$$\therefore \cos A \in (\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}),$$

$$\therefore \cos^2 A \in (\frac{1}{2}, \frac{3}{4}),$$

设
$$t = \cos^2 A \in (\frac{1}{2}, \frac{3}{4}),$$

$$\therefore 4\cos^2 A + \frac{1}{\cos^2 A} - 1 = 4t + \frac{1}{t} - 1, \ t \in (\frac{1}{2}, \frac{3}{4}),$$

由根据对勾函数可知 $y = 4t + \frac{1}{t} - 1$ 在 $t \in (\frac{1}{2}, \frac{3}{4})$ 上单调递增,

$$\therefore y \in (3, \frac{10}{3}),$$

∴
$$\frac{b}{a} + (\frac{2a}{c})^2$$
的取值范围为 (3, $\frac{10}{3}$).