江苏省梅村高级中学 2020-2021 学年高三(上)

暑期检测卷数学

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.

1. 已知集合 $A = \{0,1,2,4,6\}$, $B = \{n \in \mathbb{N}^* | 2^n < 33\}$, 则集合 $A \cap B$ 的子集个数为(

A. 8

B. 7

C. 6

2. $\frac{2-i}{1+2i} = ($

A. 1

B. -1

C. i

D. -i

3. $\triangle ABC$ 中, $\overline{AB} \cdot \overline{BC} > 0$,则 $\triangle ABC$ 一定是

A. 锐角三角形

B. 直角三角形 C. 钝角三角形 D. 不确定

4. 日晷是中国古代用来测定时间 仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间. 把地球看 成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指 过点 A 且与 OA 垂直的平面.在点 A 处放置一个日晷,若晷面与赤道所在平面平行,点 A 处的纬度为北纬 40° ,则晷针与点 A 处的水平面所成角为 ()

A. 20°

B. 40°

C. 50°

D. 90°

5. 函数 $y = \frac{2-x}{x+1}$, $x \in (m, n]$ 的最小值为 0,则 m 的取值范围是 ()

A. (1, 2)

B. (-1, 2)

C. [1, 2)

D. [-1, 2)

6. 已知 f(x) = m(x-2m)(x+m+3), $g(x) = 4^x - 2$, 若对任意 $x \in R$, f(x) < 0 或 g(x) < 0, 则 m的取值范围是

A.
$$\left(-\frac{7}{2}, +\infty\right)$$
 B. $\left(-\infty, \frac{1}{4}\right)$ C. $\left(-\frac{7}{2}, 0\right)$ D. $\left(0, \frac{1}{4}\right)$

B.
$$\left(-\infty, \frac{1}{4}\right)$$

C.
$$\left(-\frac{7}{2},0\right)$$

D.
$$\left(0, \frac{1}{4}\right)$$

7.4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰有2个空盒的放法有(

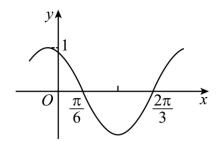
- A. 144 种
- B. 120 种
- C. 84 种

8. 已知圆 $C_1:(x-2)^2+(y-3)^2=1$ 和圆 $C_2:(x-3)^2+(y-4)^2=9$, M,N 分别是圆 C_1,C_2 上的动点, P为x轴上的动点,则|PM|+|PN|的最小值为(

- A. $5\sqrt{2}-4$
- B. $\sqrt{17} 1$ C. $6 2\sqrt{2}$
- D. $\sqrt{17}$

二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分.在每小题给出的选项中, 有多项符合题 目要求.全部选对的得5分,选错和漏选的得0分.

- 9. 已知函数 $f(x) = 3x^2 6x 1$, 则 ()
- A. 函数 f(x) 在(2,3)有唯一零点
- B. 函数 f(x) 在 $(-1,+\infty)$ 上单调递增
- C. 当 a > 1 时,若 $f(a^x)$ 在 $x \in [-1,1]$ 上的最大值为 8,则 a = 3
- D. 当0<a<1时,若 $f(a^x)$ 在 $x \in [-1,1]$ 上的最大值为8,则 $a = \frac{1}{2}$
- 10. 下列判断正确的是(
- A. 若随机变量 ξ 服从正态分布 $N(1,\sigma^2)$, $P(\xi \le 4) = 0.79$, 则 $P(\xi \le -2) = 0.21$
- B. 已知直线l \perp 平面 α , 直线m// 平面 β , 则" α // β "是"l \perp m"的必要不充分条件
- C. 若随机变量 ξ 服从二项分布: $\xi \square B\left(4,\frac{1}{4}\right)$, 则 $E(\xi)=1$
- D. $am^2 > bm^2$ 是 a > b 的充分不必要条件
- 11. 下图 函数 $y=\sin(\omega x+\varphi)$ 的部分图像,则 $\sin(\omega x+\varphi)=$ ()



- A. $\sin(x+\frac{\pi}{2})$

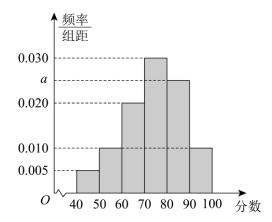
- B. $\sin(\frac{\pi}{3} 2x)$ C. $\cos(2x + \frac{\pi}{6})$ D. $\cos(\frac{5\pi}{6} 2x)$

12. 下列选项中, $p \neq q$ 的必要不充分条件的是 ()

- B. p: a≥8; q: 对∀x∈[1, 3]不等式 x² a≤0 恒成立
- C. 设 $\{a_n\}$ 是首项为正数的等比数列,p: 公比小于 0; q: 对任意的正整数 n, $a_{2n-1}+a_{2n}<0$
- D. 已知空间向量 $\stackrel{\rightarrow}{a} = (0, 1, -1), \stackrel{\rightarrow}{b} = (x, 0, -1), p: x=1; q: 向量<math>\stackrel{\rightarrow}{a} = \stackrel{\rightarrow}{b} = \stackrel{\rightarrow}{b} = \frac{\pi}{3}$
- 三、填空题:本题共4小题,每小题5分,共20分.
- 13. 已知函数 $f(x) = 2\sin x + \sin 2x$,则 f(x) 的最小值是______.
- 14. 设椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点为 F_1 、 F_2 ,点P 在椭圆上,若 $\triangle PF_1F_2$ 是直角三角形,则 $\triangle PF_1F_2$

的面积为_____.

- 15. 二面角的棱上有 A , B 两点,直线 AC , BD 分别在这个二面角的两个半平面内,且都垂直于 AB .已 知 AB = 4 , AC = 6 , BD = 8 , $CD = 2\sqrt{17}$, 则该二面角的大小为______.
- 16. 棱长为 12 的正四面体 ABCD 与正三棱锥 E—BCD 的底面重合,若由它们构成的多面体 ABCDE 的顶点均在一球的球面上,则正三棱锥 E—BCD 的体积为_______,该正三棱锥内切球的半径为______.
- 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
- 17. 在公差为 2 的等差数列 $\{a_n\}$ 中, a_1+1 , a_2+2 , a_3+4 成等比数列.
- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\{a_n-2^n\}$ 的前n项和 S_n .
- 18. $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c ,已知 $a\sin\frac{A+C}{2}=b\sin A$.
- (1) 求B;
- (2) 若 $\triangle ABC$ 为锐角三角形,且C=2,求 $\triangle ABC$ 面积的取值范围.
- 19. 为抗击新型冠状病毒,普及防护知识,某校开展了"疫情防护"网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
- [40,50),[50,60),[60,70),[70,80),[80,90), [90,100], 得到如图所示的频率分布直方图.



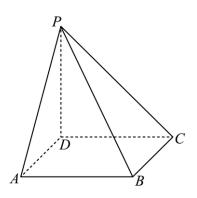
- (1) 求 a 的值,并估计这 100 名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
- (2) 在抽取的 100 名学生中,规定:比赛成绩不低于 80 分为"优秀",比赛成绩低于 80 分为"非优秀".请将下面的 2×2 列联表补充完整,并判断是否有 99%的把握认为"比赛成绩是否优秀与性别有关"?

	优秀	非优秀	合计
男生		40	
女生			50
合计			100

参考公式及数据:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}, n=a+b+c+d$$
.

$P(K^2k_0)$	0.05	0.01	0.005	0.001
k_0	3.841	6.635	7.879	10.828

20. 如图,四棱锥 P-ABCD 底面为正方形,PD \bot 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.



- (1) 证明: *l* 上平面 *PDC*;
- (2) 已知 PD=AD=1, Q 为 l 上的点,求 PB 与平面 QCD 所成角的正弦值的最大值.

- 21. 已知抛物线 $y^2 = 4x$,与圆 $F:(x-1)^2 + y^2 = 1$,直线 MN: x = my + 4 与抛物线相交于 M , N 两点.
- (1) 求证: $OM \perp ON$.
- (2) 若直线MN与圆F相切,求 ΔOMN 的面积S.
- 22. 已知函数 $f(x) = x^2 a \ln x 2x$, $a \in R$.
- (1) 若函数 f(x) 在 $(0,+\infty)$ 内单调,求 a 的取值范围;
- (2) 若函数 f(x) 存在两个极值点 x_1 , x_2 , 求 $\frac{f(x_1)}{x_1} + \frac{f(x_2)}{x_2}$ 取值范围