无锡市辅仁高级中学 2020-2021 学年度第二学期期中考试

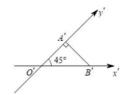
高一数学试卷

人版上	1 444
命题人:	审核人:

一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项 是符合题目要求的)

1. i 是虚数单位,复数 $(1-2i)^2$ 的虚部为()

A.4i


B. 3

C.4 D.-4

2. 如图,已知等腰直角 \triangle O(A'B'),O(A'=A'B')是一个平面图形的直观图,斜边 O(B'=2),则这个平 面图形的面积是()

B.1 $C.\sqrt{2}$

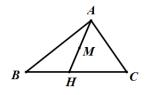
 $D.2\sqrt{2}$

3. 已知三角形 ABC 中, $a=\sqrt{2}$, $b=\sqrt{3}$, $B=60^\circ$,那么角 A 等于())

 $A.135^{\circ}$

 $B.90^{\circ}$

 $C.45^{\circ}$


 $D.30^{\circ}$

4. 轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的底面积是侧面积的()

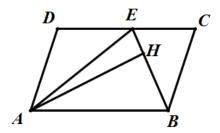
 $C.\frac{1}{2}$

5. 在 $\triangle ABC$ 中,H 为 BC 上异于 B,C 的任一点,M 为 AH 的中点,若 $\overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$,

则 $\lambda + \mu$ 等于()

6. 在△ <i>ABC</i> 中,若	$a=18$, $b=24$, $A=45^{\circ}$, \square	川此三角形有 ()		
<i>A</i> .无解	B.两解	C.一解	D.解的个数不确定	
7. 欧拉是一位杰	出的数学家, 为数学	发展作出了巨大贡献	, 著名的欧拉公式:	
$e^{i\theta} = \cos\theta + i\sin\theta$,将三角函数的定义域扩	大到复数集,建立了三角的	函数和指数函数的关系,	
它在复变函数论里	占有非常重要的地位,	被誉为"数学中的天桥	".结合欧拉公式,复数	
$z = \frac{1-2i}{1+i} + \sqrt{2}e^4 \stackrel{\text{def}}{=}$	E复平面内对应的点位于(()		
A.第一象限	B.第二象限	C.第三象限	D.第四象限	
8. 半径为 2 的圆 O 上有三点 $A \setminus B \setminus C$ 满足 $\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0}$, 点 P 是圆内一点,则				
$\overrightarrow{PA} \cdot \overrightarrow{PO} + \overrightarrow{PB} \cdot \overrightarrow{PC}$	的取值范围为()			
A.[[-4,14)	B. (-4,14]	C.[-4,4)	D. (-4,4]	
二、多选题(本题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符合题				
目要求,全部选对的	的得5分,部分选对的得2	2分,有选错的得0分)		
9. 下列命题中正确的	的有()			
A.空间内三点确定一个平面				
B.棱柱的侧面一定是	是平行四边形			
C.分别在两个相交平	² 面内的两条直线如果相交	で, 则交点只可能在两个平	面的交线上	
D 一条直线与三角形的两边都相交,则这条直线必在三角形所在的平面内				
10. 下列说法正确的是()				
$A.$ 若 $ z =2$,则 $z\cdot z$	$\overline{z} = 4$			
B .若复数 z_1, z_2 满足				
	$ z_1 + z_2 = z_1 - z_2 $, $y = z_1 $	$z_2 = 0$		
C.若复数 z 的平方是	$ z_1 + z_2 = z_1 - z_2 $,则 z_1 是纯虚数,则复数 z 的实部			
	上纯虚数,则复数 z 的实部		· 它分条件	

11. $\triangle ABC$ 是边长为 2 的等边三角形,已知向量 \vec{a} , \vec{b} 满足 $\vec{AB} = 2\vec{a}$, $\vec{AC} = 2\vec{a} + \vec{b}$,则下列结论 中正确的是() \vec{A} . \vec{a} 为单位向量 \vec{b} 为单位向量 \vec{c} . $\vec{a} \perp \vec{b}$ \vec{b} \vec{b} \vec{b} \vec{c} 12. 在 $\triangle ABC$ 中,a,b,c 分别是角 A,B,C 的对边,C 为钝角,且 $c-b=2b\cos A$,则下列 结论中正确的是() $A. a^2 = b(b+c)$ B. A = 2B $C. 0 < \cos A < \frac{1}{2}$ $D. 0 < \sin B < \frac{1}{2}$ 三、填空题(本题共4小题,每小题5分,共20分) 13. 复数 z 满足 $(1+i)z = \sqrt{3}-1$, 则 z 的共轭复数 z= . 14. 已知向量 \vec{a} 与 \vec{b} 的夹角为 120°,且 $|\vec{a}|$ = $|\vec{b}|$ = 4,那么 \vec{b} (3 \vec{a} + \vec{b})的值为 15. 圆台上、下底面的圆周都在一个直径为20的球面上,其上、下底面半径分别为8和10,则 该圆台的体积为_____. 16. 在锐角 $\triangle ABC$ 中,内角 A, B, C 所对的边分别为 a, b, c, b=4, c=6,且 $a\sin B = 2\sqrt{3}$, 则角 A= ; 若角 A 的平分线为 AD,则线段 AD 的长为 . 四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17. (本题满分 10 分) 已知 $z = (m^2 - 8m + 15) + (m^2 - 5m + 6)i$, 其中 i 是虚数单位, m 为实数.

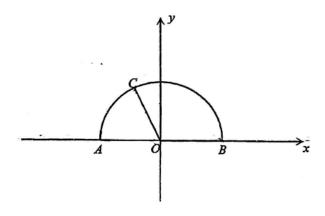

(2) 当复数 $z \cdot i$ 在复平面内对应的点位于第二象限时,求 m 的取值范围.

(1) 当z 为纯虚数时, 求m 的值;

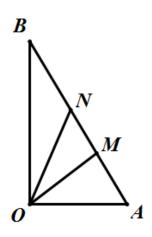
18. (本题满分 12 分) 已知 $\triangle ABC$ 的角 A、B、C 所对的边分别是 a、b、c,设向量 $\overrightarrow{m}=(a,b)$, $\overrightarrow{n}=(\sin B,\sin A)$, $\overrightarrow{p}=(b-2,a-2)$,.

- (1) 若 $\vec{m}//\vec{n}$, 求证: $\triangle ABC$ 为等腰三角形;
- (2) 若 $\vec{m}//\vec{p}$, 边长 c=2,角 $C = \frac{\pi}{3}$,求 $\triangle ABC$ 的面积.

- 19. (本题满分 12 分)如图在平行四形 ABCD 中,AB=4,AD=2, $\angle BAD=60^\circ$,E 为 CD 的中点,H 为线段 BE 上靠近点 E 的四等分点,记 $\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AD}=\overrightarrow{b}$.
 - (1) 用; \vec{a} , \vec{b} 表示 \overrightarrow{AE} , \overrightarrow{AH} ;
 - (2) 求线段 AH 的长.



- (1) 求角 A;
- (2) 若 $a = \sqrt{3}$,求 $\triangle ABC$ 周长的最大值.


21. (本题满分 12 分)已知半圆圆心为 O,直径 AB=4,C 为半圆弧上靠近点 A 的三等分点,若 P 为半径 OC 上的动点,以 O 点为坐标原点建立如图所示的平面直角坐标系.

(1) 若
$$\overrightarrow{PA} = \frac{3}{4}\overrightarrow{CA} - \frac{1}{4}\overrightarrow{CB}$$
, 求 \overrightarrow{PA} 与 \overrightarrow{CB} 夹角的大小;

(2) 试确定点 P 的位置,使 $\overrightarrow{PA} \cdot \overrightarrow{PO}$ 取得最小值,并求此最小值.

- 22. (本题满分 12 分)如图所示,某镇有一块空地 \triangle OAB,其中 OA=3km, $\angle OAM=60^{\circ}$, \angle $AOB=90^{\circ}$,当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖 \triangle OMN,其中 M,N 都在边 AB 上,且 \angle $MON=30^{\circ}$,挖出的泥土堆放在 \triangle OAM 地带上形成假山,剩下的 \triangle OBN 地带开设儿童游乐场.为安全起见,需在 \triangle OAN 的周围安装防护网,设 \angle $AOM=\theta$.
- (1) 当 $AM = \frac{3}{2}km$ 时,求 θ 的值,并求此时防护网的总长度;
- (2) 若 θ =15°, 问此时人工湖用地 Δ OMN 的面积是堆假山用地 Δ OAM 的面积的多少倍;
- (3)为节省投入资金,人工湖 ΔOMN 的面积要尽可能小,问如何设计施工方案,可使 ΔOMN 的面积最小?最小面积是多少?

