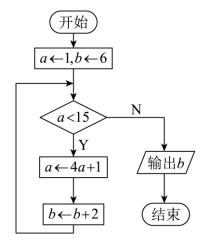
江苏省无锡市第一中学 2019 届高三 2 月数学测试卷含附加题

一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上.

1. 已知集合
$$M = \{-1,1\}$$
, $N = \{x \mid \frac{1}{2} < 2^{x+1} < 4, x \in Z\}$, 则 $M \cap N =$ ______.

- 2. 复数 z=(1-i)i(i) 为虚数单位)的共轭复数为______.
- 3. 某高一学生在确定选修地理 情况下,想从历史、政治、化学、生物、物理中再选择两科进行学习,在所选的两科中有生物的概率是_____.
- 4. 如图是一个算法流程图,则输出的 b 的值为____.



 $\cos\left(\alpha - \frac{\pi}{4}\right)\sin\left(\frac{3\pi}{4} - \alpha\right) = \frac{\sqrt{3}}{3}, \quad \alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right), \quad \sin 2\alpha = \underline{\hspace{1cm}}$

6. 已知正四棱柱的底面边长为3cm,侧面的对角线长是 $3\sqrt{5}cm$,则这个正四棱柱的体积是____cm 3 _

- 7. 在平面直角坐标系中,四边形 ABCD 是平行四边形, $\overrightarrow{AB} = (1,-2)$, $\overrightarrow{AD} = (2,1)$,则 $\overrightarrow{AD} \cdot \overrightarrow{AC} = (2,1)$
- 8. 在平面直角坐标系 xOy 中,已知直线 y = 3x + t 与曲线 $y = a\sin x + b\cos x (a,b,t \in \mathbf{R})$ 相切于点 (0,1),则 (a+b)t 的值为 .
- 9. 己知数列 $\{a_n\}$ 是等差数列,且 $a_n > 0$,若 $a_1 + a_2 + \ldots + a_{100} = 500$,则 $a_{50} \cdot a_{51}$ 最大值_____.

$$\begin{cases} y \ge x+1 \\ y \le -\frac{1}{2}x+4 \\ x \ge 1 \end{cases}, \quad y 满足不等式组 \qquad z = \frac{y}{x+2} \text{ 的取值范围是}_{---}.$$

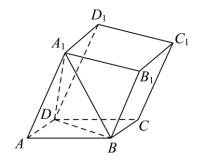
$$x^2$$
 y^2

- $\frac{x^2}{9-16}=1$ 右顶点为 A,右焦点为 F,过点 F且与双曲线的一条渐近线平行的直线与另一 条渐近线交于点 B,则 $\triangle AFB$ 的面积为 .
- 12. 已知 $a \times b$ 为正实数,函数 $f(x) = ax^3 + bx + 2^x$ 在[0,1]上的最大值为 4,则 f(x)在[-1,0]上的最小值为
- 13. 在平面直角坐标系 xoy 中,已知点 A(1,1), B, C 为圆 $O: x^2 + y^2 = 4$ 上的两动点,且 $BC = 2\sqrt{3}$, 若圆 $O_{$ 上存在点P, 使得 $\overline{AB} + \overline{AC} = m\overline{OP}, m > 0,$ 则正数m的取值范围为______.

$$\frac{a+3lna}{b} = \frac{d-3}{2c} = \frac{1}{1}$$
, 则 $(a-c)^2 + (b-d)^2$ 的最小值为_____.

- 二、解答题: 本大题共 6 小题, 共 90 分.请在答题卡制定区域内作答, 解答时应写出文字说 明、证明过程或演算步骤.
- 15. 在斜三角形 ABC 中,角 A,B,C 的对边分别为 a,b,c.
- $\frac{a}{(1)}$ 若 $2\sin A\cos C = \sin B$, 求 $\frac{a}{c}$ 值;

16. 如图,在六面体 *ABCD* - *A*₁*B*₁*C*₁*D*₁ 中, *AA*₁//*CC*₁, *A*₁*B*=*A*₁*D*, *AB*=*AD*.求证:

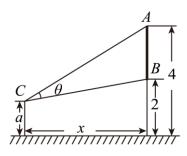


- (1) $AA_1 \perp BD$;
- (2) $BB_1//DD_1$.

$$\frac{\mathbf{x}^2}{\mathbf{a}^2} \frac{\mathbf{y}^2}{\mathbf{b}^2}$$
 17. 已知椭圆 C: $\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$ ($\mathbf{a} > \mathbf{b} > 0$) 的两个焦点分别为 \mathbf{F}_1 ($\mathbf{-2}$, $\mathbf{0}$), \mathbf{F}_2 ($\mathbf{2}$, $\mathbf{0}$),离心率为 $\mathbf{3}$. 过焦点 \mathbf{F}_2 的直线 $\mathbf{1}$ (斜率不为 $\mathbf{0}$) 与椭圆 \mathbf{C} 交于 \mathbf{A} , \mathbf{B} 两点,线段 $\mathbf{A}\mathbf{B}$ 的中点为 \mathbf{D} , \mathbf{O} 为坐标原点,直线 \mathbf{OD} 交椭圆于 \mathbf{M} , \mathbf{N} 两点.

- (I) 求椭圆 C 的方程;
- (II) 当四边形 MF₁NF₂为矩形时,求直线1的方程.

18. 如图,墙上有一壁画,最高点 A 离地面 4 米,最低点 B 离地面 2 米,观察者从距离墙 x(x>1) 米,离地面高 $a(1 \le a \le 2)$ 米的 C 处观赏该壁画,设观赏视角 $\angle ACB = \theta$.



- $\tan \theta = \frac{1}{2},$ (2) 若 = a 变化时,求x 的取值范围.
- 19. 己知函数 $f(x) = x^2 + bx + c(b, c \in R)$, 并设 $F(x) = \frac{f(x)}{e^x}$,
- (1) 若 F(x) 图像在 x=0 处的切线方程为 x-y=0, 求 b 、 c 的值;
- (2) 若函数 F(x) 是 $(-\infty, +\infty)$ 上单调递减,则
- ① 当 $x \ge 0$ 时,试判断f(x)与 $(x+c)^2$ 的大小关系,并证明之;
- ② 对满足题设条件 任意b、c, 不等式 $f(c)-Mc^2 \le f(b)-Mb^2$ 恒成立, 求M 的取值范围 20. 数列 $\left\{a_n\right\}$ 是公差为d($d \ne 0$)的等差数列,它的前n 项和记为 A_n ,数列 $\left\{b_n\right\}$ 是公比为q($q \ne 1$)的等比数列,它的前n 项和记为 B_n . 若 $a_1 \ne b_1 \ne 0$,且存在不小于 3 的正整数k,m,使 $a_k = b_m$.
- $(1) \stackrel{\text{def}}{=} a_1 = 1, d = 2, q = 3, m = 4, \ \ \text{\vec{x}}^{A_k}.$
- (2) 若 $a_1 = 1, d = 2$ 试比较 $A_{2k} = B_{2m}$ 的大小,并说明理由;
- (3) 若q=2, 是否存在整数 m, k, 使 $A_k=86B_m$ 若存在, 求出 m, k 的值; 若不存在, 说明理由.
- $\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\mathbf{N} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$, $\mathbf{M} = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & 2 \end{bmatrix}$, 求矩阵 \mathbf{M} .

- 23. "回文数"是指从左到右与从右到左读都一样的正整数,如 22,121,3553等.显然 2位"回文数"共9个:11,22,33,…,99.现从 9个不同 2位"回文数"中任取 1个乘以 4,其结果记为 X;从 9个不同 2位"回文数"中任取 2个相加,其结果记为 Y.
- (1) 求 X 为"回文数"的概率;
- (2) 设随机变量 ξ 表示 X, Y 两数中"回文数"的个数,求 ξ 的概率分布和数学期望 $E(\xi)$.
- 24. 设 $n \ge 3$, $n \in \mathbb{N}^*$, 在集合 $\{1,2,...,n\}$ 的所有元素个数为 2 的子集中, 把每个子集的较大元素相加,和记为a, 较小元素之和记为b.
- (1) 当 n = 3 时, 求 a, b 的值;
- (2) 求证:为任意的 $n \ge 3$, $n \in N^*$, $\frac{b}{a}$ 为定值