江苏省无锡辅仁高级中学 2019—2020 学年高二下学期期中考试

数学试题

一、选择题

1. 已知集合 $A = \{-1,0,1\}$, $B = \{x | 1 < 2^x < 4\}$, 则 $A \cap B = ($

- A. $\{-1,0,1\}$ B. $\{1\}$ C. $\{-1,1\}$ D. $\{0,1\}$

2. 已知 $x, y \in R$,则 " x = y " 是 " |x+3| = |y+3| " 的 (

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

3. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 $\frac{\sqrt{6}}{2}$,则双曲线的渐近线方程为(

- A. $y = \pm 2x$ B. $y = \pm \sqrt{2}x$ C. $y = \pm \frac{\sqrt{2}}{2}x$ D. $y = \pm \frac{1}{2}x$

4. 在 $\triangle ABC$ 中, a,b,c 分别为角 A,B,C 所对边,若 $a=2b\cos C$,则此三角形一定是(

A. 等腰直角三角形

B. 直角三角形

C. 等腰三角形

D. 等腰或直角三角形

5. 已知 $a = \log_3 \frac{9}{2}$, $b = \left(\frac{1}{4}\right)^{\frac{1}{3}}$, $c = \log_{\frac{1}{2}} \frac{1}{6}$, 则 a, b, c 的大小关系为(

- B. b > a > c
- C. c > b > a D. c > a > b

6. 己知 $(1-3x)^9 = a_0 + a_1x + a_2x^2 + ... + a_9x^9$,则 $|a_0| + |a_1| + |a_2| + ... + |a_9|$ 等于(

- A. 2^9
- B. 4^9
- C. 3⁹
- D. 1

7. 若 x_0 是方程 $\left(\frac{1}{2}\right)^x = x^{\frac{1}{3}}$ 的解,则 x_0 属于区间(

- A. $\left(\frac{2}{3},1\right)$ B. $\left(\frac{1}{2},\frac{2}{3}\right)$ C. $\left(\frac{1}{3},\frac{1}{2}\right)$ D. $\left(0,\frac{1}{3}\right)$

8. 已知函数 $f(x) = \sin 2x + \sqrt{3}\cos 2x$ 的图象向左平移 $\varphi\left(0 < \varphi < \frac{\pi}{2}\right)$ 个单位后,其图象关于 y 轴对称,

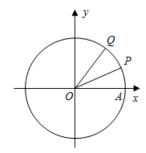
则 φ 的值为(

A. $\frac{\pi}{12}$	B. $\frac{\pi}{6}$	C. $\frac{\pi}{3}$	D. $\frac{5\pi}{12}$					
9. 已知双曲线的中心	」在原点,离心率为 $√3$,若它的一条准线与抗	如物线 $y^2 = 4x$ 的准线重合,则该双曲线					
与抛物线 $y^2 = 4x$ 的多)						
A. $2\sqrt{3} + \sqrt{6}$	B. $\sqrt{21}$	C. $18+12\sqrt{2}$	D. 21					
10. 已知函数 $h(x)=$	$\frac{m}{e^x} + e^x$ 在区间 $[0,1]$ 上	不单调,则实数 <i>m</i> 的取	Z值范围为 ()					
A. $[1, e]$	B. $(1,e)$	C. $\left[1,e^2\right]$	D. $(1,e^2)$					
11. 从 5 位男教师和	4 位女教师中选出 3 位	教师,派到3个班担任	班主任(每班1位班主任),要求这3位					
班主任中男、女教师	都要有,则不同的选派。	方案共有 ()						
A. 210 种	B. 420 种	C. 630 种	D. 840 种					
12. 在 $\triangle ABC$ 中, $AB=2$, D , E 分别是边 AB , AC 的中点, CD 与 BE 交于点 O ,若 $OC=\sqrt{3}OB$,								
则 $\triangle ABC$ 面积的最大值为 ()								
A. $\sqrt{3}$	B. $3\sqrt{3}$	C. $6\sqrt{3}$	D. $9\sqrt{3}$					
二、填空题								
13. 已知 $f(x)$ 是奇丽	函数,且当 $x > 0$ 时, f	$f(x) = e^{3x}, \text{if } (-\ln x)$	2) =					
14. 若对于任意的实	数 x ,有 $x^3 = a_0 + a_1(x)$	$(x-3) + a_2(x-3)^2 + a_3$	$(x-3)^3$, $y_1 a_1 + a_2 + a_3$ 的值为					
15. 已知正实数 x, y 满足 $x + 3y = 9$,则 $\sqrt{x} + \sqrt{3y}$ 的最大值是								
16. 规定,若函数 $f(x)$ 在定义域 $[m,n]$ $(1 < m < n)$ 上的值域是 $[m^3,n^3]$,则称该函数为"绅士风度"函								
数.已知函数 $f(x) = a^x$ ($a > 0$ 且 $a \ne 1$) 为"绅士风度"函数,则 a 的取值范围是								
三、解答题								

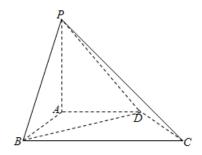
17. 如图,设点 A 是单位圆 O 和 x 轴正半轴的交点,O 是坐标原点,P,Q 是单位圆上的两点, $\angle AOP = \frac{\pi}{6}$, $\angle AOQ = \alpha$, $\alpha \in [0,\pi)$.

(1) 求
$$Q\left(\frac{3}{5}, \frac{4}{5}\right)$$
, 求 $\cos\left(\alpha - \frac{\pi}{6}\right)$ 的值;

(2) 设函数 $f(\alpha) = \overrightarrow{OP} \cdot \overrightarrow{OQ}$, 求 $f(\alpha)$ 的值域.



- 18. 如图,在四棱锥 P-ABCD中, PA 上平面 ABCD, AP=AB=AD=1, AB 上 AD , AD \square BC .
- (1) 若直线 PB 与 CD 所成角的大小为 $\frac{\pi}{3}$, 求 BC 的长;
- (2) 求二面角 B-PD-A 的余弦值.



- 19. 在 $\triangle ABC$ 中,角A,B,C所对的边分别为a,b,c,且 $a=b\cos C+c\sin B$.
- (1) 求 B 的值;
- (2) 已知 $b = \sqrt{2}$, $c = \sqrt{3}$, 求a.
- 20. 将名为《高等代数》、《数学分析》、《概率论》和《复变函数》的 4 本不同的书随机放入甲、乙、丙、丁 4 个书包中.
- (1) 求 4 本书恰好放在 4 个不同书包中的概率;
- (2) 随机变量 X 表示放在丙书包中书的本数, 求 X 的概率分布和数学期望 E(X).
- 21. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{b^2}{b^2} = 1(a > b > 0)$,A(a,0),B(0,b),O(0,0),若 $\triangle OAB$ 的面积为 1,且过右焦点F 垂直于x轴的直线被椭圆C 截得的线段长为 1.
- (1) 求椭圆C的方程;
- (2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问 $AN \cdot BM$ 是否为定值,若是,求出该定值,若不是,请说明理由.
- 22. 已知函数 $f(x) = mx^{-1} \ln x + n$.
- (1) 若m=1, n=0, 求函数f(x)的单调区间;
- (2) 若m=1, n=1, 求函数f(x)在区间[2a,4a]上的最小值;

(3) 某高二学习研究小组通过研究发现: 总存在正实数a,b(a < b),使等式 $a^b = b^a$ 成立.试问: 他们的研究成果是否确? 若正确,请写出a,b的取值范围; 若不正确,请说明理由.

参考答案

1. B 2. A 3. C 4. C 5. D 6. B 7. C 8. A

9. B 10. D 11. B 12. C

13. -8

14. 37

15. $3\sqrt{2}$

16. $\left(1,e^{\frac{3}{e}}\right)$

17. 解: (1) 由已知可得 $\cos \alpha = \frac{3}{5}$, $\sin \alpha = \frac{4}{5}$,

 $\therefore \cos\left(\alpha - \frac{\pi}{6}\right) = \cos\alpha\cos\frac{\pi}{6} + \sin\alpha\sin\frac{\pi}{6} = \frac{3}{5} \times \frac{\sqrt{3}}{2} + \frac{4}{5} \times \frac{1}{2} = \frac{3\sqrt{3} + 4}{10}.$

(2) 由己知得 $\overrightarrow{OP} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \ \overrightarrow{OQ} = \left(\cos\alpha, \sin\alpha\right),$

 $\therefore f(\alpha) = \overrightarrow{OP} \cdot \overrightarrow{OQ} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot (\cos \alpha, \sin \alpha)$

 $=\frac{\sqrt{3}}{2}\cos\alpha + \frac{1}{2}\sin\alpha = \sin\frac{\pi}{3}\cos\nu + \cos\frac{\pi}{3}\sin\alpha = \sin\left(\alpha + \frac{\pi}{3}\right)$

 $\therefore \alpha \in [0,\pi), \quad \therefore \alpha + \frac{\pi}{3} \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right],$

 $\therefore -\frac{\sqrt{3}}{2} < \sin\left(\alpha + \frac{\pi}{3}\right) \le 1.$

故 $f(\alpha)$ 的值域是 $\left(-\frac{\sqrt{3}}{2},1\right]$.

18. 解:(I)分别以AB、AD、AP 所在直线为x、y、z 轴建立如图所示的空间直角坐标系A-xyz.

AP = AB - AD - 1, A(0,0,0), B(1,0,0), D(0,1,0), P(0,0,1).

设C(1, y, 0),则 $\overrightarrow{PB} = (1, 0, -1)$, $\overrightarrow{CD} = (-1, 1 - y, 0)$.

:: 直线 PB 与 CD 所成角大小为 $\frac{\pi}{3}$,

$$\therefore \left| \cos \left\langle \overrightarrow{PB}, \overrightarrow{CD} \right\rangle \right| = \left| \frac{\overrightarrow{PB} \cdot \overrightarrow{CD}}{\left| \overrightarrow{PB} \right| \left| \overrightarrow{CD} \right|} \right| = \frac{1}{2} ,$$

即
$$\frac{1}{\sqrt{2} \times \sqrt{1 + (1 - y)^2}} = \frac{1}{2}$$
, 解得 $y = 2$ 或 $y = 0$ (舍),

:: C(1,2,0),则 BC 的长为 2;

(II) 设平面 *PBD* 的一个法向量为 $\vec{m} = (x, y, z)$.

$$\overrightarrow{PB} = (1,0,-1), \quad \overrightarrow{PD} = (0,1,-1),$$

$$\therefore \left\{ \begin{array}{l} \overrightarrow{PB} \cdot \overrightarrow{m} = x - z = 0 \\ \overrightarrow{PD} \cdot \overrightarrow{m} = y - z = 0 \end{array} \right., \Leftrightarrow x = 1, \quad \emptyset \ y = 1, \quad z = 1, \quad \overrightarrow{m} = (1,1,1).$$

:平面 PAD 的一个法向量为 $\vec{n} = (1,0,0)$,

$$\therefore \cos\langle \vec{m}, \vec{n} \rangle = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}||\vec{n}|} = \frac{\sqrt{3}}{3} ,$$

∴二面角
$$B-PD-A$$
 的余弦值为 $\frac{\sqrt{3}}{3}$.

19. \mathfrak{M} : (1) : $a = b \cos C + c \sin B$,

 $\therefore \sin A = \sin B \cos C + \sin C \sin B,$

$$\mathbb{Z} : \sin A = \sin \left[\pi - \left(B + C \right) \right] = \sin \left(B + C \right) = \sin B \cos C + \cos B \sin C ,$$

 $\therefore \sin B \cos C + \sin C \sin B = \sin B \cos C + \cos B \sin C$, $\square \sin C \sin B = \cos B \sin C$,

 $\because \cos B \sin C \neq 0$,等是两边同时除以 $\cos B \sin C$ 得

$$\therefore \tan B = 1, \quad 0 < B < \pi , \quad \therefore B = \frac{\pi}{4}.$$

(2) 由余弦定理 $b^2 = a^2 + c^2 - 2ac \cos B$,

得
$$2 = a^2 + 3 - 2\sqrt{3}a\frac{\sqrt{2}}{2}$$
,即 $a^2 - \sqrt{6}a + 1 = 0$,

解得
$$a = \frac{\sqrt{6} \pm \sqrt{2}}{2}$$
.

20. 解: (1) 将 4 本不同的书放入编号为 1, 2, 3, 4 的四个抽屉中,共有 $4^4 = 256$ 种不同放法,记"4 本

书恰好放在四个不同抽屉中"为事件 A,

则事件 A 包含 $A_4^4 = 24$ 个基本事件,

$$\therefore P(A) = \frac{24}{256} = \frac{3}{32},$$

 \therefore 4 本书恰好放在四个不同抽屉中的概率为 $\frac{3}{32}$.

(2) X的可能取值为0,1,2,3,4,

$$P(X=0) = \frac{3^4}{4^4} = \frac{81}{256}$$

$$P(X=1) = \frac{C_4^1 \times 3^3}{4^4} = \frac{27}{64}$$

$$P(X=2) = \frac{C_4^2 \times 3^2}{4^4} = \frac{27}{128}$$

$$P(X=3) = \frac{C_4^3 \times 3}{4^4} = \frac{3}{64}$$
,

$$P(X=4) = \frac{C_4^4}{4^4} = \frac{1}{256}$$

∴ X 的分布列为:

X	0	1	2	3	4
P	$\frac{81}{256}$	$\frac{27}{64}$	$\frac{27}{128}$	$\frac{3}{64}$	$\frac{1}{256}$

$$\therefore E(X) = 0 \times \frac{81}{256} + 1 \times \frac{27}{64} + 2 \times \frac{27}{128} + 3 \times \frac{3}{64} + 4 \times \frac{1}{256} = 1.$$

21. 解: (I) 由已知,
$$\frac{c}{a} = \frac{\sqrt{3}}{2}$$
, $\frac{1}{2}ab = 1$, 又 $a^2 = b^2 + c^2$,

(II) 设椭圆上一点
$$P(x_0, y_0)$$
, 则 $\frac{x_0^2}{4} + y_0^2 = 1$.

直线
$$PA: y = \frac{y_0}{x_0 - 2}(x - 2), \Leftrightarrow x = 0, 得 y_M = \frac{-2y_0}{x_0 - 2}.$$

∴
$$|BM| = \left| 1 + \frac{2y_0}{x_0 - 2} \right|$$
 直线 $PB: y = \frac{y_0 - 1}{x_0} x + 1$, $\Leftrightarrow y = 0$, $\forall x_N = \frac{-x_0}{y_0 - 1}$.

将 $\frac{x_0^2}{4} + y_0^2 = 1$ 代入上式得 $|AN| \cdot |BM| = 4$,故 $|AN| \cdot |BM|$ 为定值.

22. 解: (1) 定义域为
$$(0,+\infty)$$
, $f'(x) = \frac{1-\ln x}{x^2}$,

$$\diamondsuit f'(x) = \frac{1 - \ln x}{x^2} = 0 , \quad \emptyset \ x \in e ,$$

当x变化时, f'(x), f(x)的变化情况如下表:

x	(0,e)	e	$(e,+\infty)$
f'(x)	+	0	_
f(x)		$\frac{1}{e}$	

- $\therefore f(x)$ 的单调增区间为(0,e); 单调减区间为 $(e,+\infty)$.
- (2) 由 (1) 知 f(x) 在 (0,e) 上单调递增,在 $(e,+\infty)$ 上单调递减,所以,

当
$$4a \le e$$
 时,即 $a \le \frac{e}{4}$ 时, $f(x)$ 在 $[2a,4a]$ 上单调递增, $\therefore f(x)_{\min} = f(2a)$;

当
$$2a \ge e$$
 时, $f(x)$ 在 $[2a,4a]$ 上单调递减, $\therefore f(x)_{\min} = f(4a)$

当
$$2a < e < 4a$$
 时,即 $\frac{e}{4} < a < \frac{e}{2}$ 时, $f(x)$ 在 $[2a,e]$ 上单调递增, $f(x)$ 在 $[e,4a]$ 上单调递减,

$$\therefore f(x)_{\min} = \min \{ f(2a), f(4a) \}.$$

下面比较 f(2a), f(4a)的大小,

$$\therefore f(2a) - f(4a) = \frac{\ln a}{4a}$$

∴若
$$\frac{e}{4}$$
 < a ≤1,则 $f(a)$ - $f(2a)$ ≤0,此时 $f(x)_{\min} = f(2a) = \frac{\ln 2a}{2a}$;

若
$$1 < a < \frac{e}{2}$$
,则 $f(a) - f(2a) > 0$,此时 $f(x)_{\min} = f(4a) = \frac{\ln 4a}{4a}$;

综上得:

当
$$a > 1$$
时, $f(x)_{\min} = f(4a) = \frac{\ln 4a}{4a}$,

(3) 正确,a的取值范围是1 < a < e

理由如下,考虑几何意义,即斜率,当 $x \to +\infty$ 时, $f(x) \to 0$

又:f(x)在(0,e)上单调递增,在 $(e,+\infty)$ 上单调递减

- $\therefore f(x)$ 的大致图象如图所示
- :. 总存在正实数 a,b 且 1 < a < e < b, 使得 f(a) = f(b), 即 $\frac{\ln a}{a} = \frac{\ln b}{b}$, 即 $a^b = b^a$.